Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander G. Haslberger is active.

Publication


Featured researches published by Alexander G. Haslberger.


Experimental Gerontology | 2009

Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and clostridium cluster IV in institutionalized elderly

Jutta Zwielehner; Kathrin Liszt; Michael Handschur; Cornelia Lassl; Alexander Lapin; Alexander G. Haslberger

AIMS This study aimed at determining ageing-related shifts in diversity and composition of key members of the fecal microbiota by comparing institutionalized elderly (n = 17, 78-94 years) and young volunteers (n = 17, 18-31 years). METHODS AND RESULTS A combination of molecular methods was used to characterize the diversity and relative abundance of total gastro-intestinal flora, along with relevant subsets within the genera Bacteroides, bifidobacteria and Clostridium cluster IV. The institutionalized elderly harbored significantly higher numbers of Bacteroides cells than control (28.5 +/- 8.6%; 21.4 +/- 7.7%; p = 0.016) but contained less bifidobacteria (1.3 +/- 0.9, 2.7 +/- 3.2%, p = 0.026) and Clostridium cluster IV (26.9 +/- 11.7%, 36.36 +/- 11.26%, p = 0.036). The elderly also displayed less total Bacteria diversity and less diversity with the Clostridium cluster IV (p < 0.016) and Bacteroides. CONCLUSION Despite high individual variations, our analyses indicate the composition of microbiota in the elderly comprises a less diverse subset of young healthy microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY A better understanding of the individual composition of the human microbiota and the effects of ageing might result in the development of specifically targeted supplementation for elderly citizens in order to support healthy ageing.


British Journal of Pharmacology | 2012

Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention

Barbara Stefanska; H Karlic; F Varga; Krystyna Fabianowska-Majewska; Alexander G. Haslberger

The hallmarks of carcinogenesis are aberrations in gene expression and protein function caused by both genetic and epigenetic modifications. Epigenetics refers to the changes in gene expression programming that alter the phenotype in the absence of a change in DNA sequence. Epigenetic modifications, which include amongst others DNA methylation, covalent modifications of histone tails and regulation by non‐coding RNAs, play a significant role in normal development and genome stability. The changes are dynamic and serve as an adaptation mechanism to a wide variety of environmental and social factors including diet. A number of studies have provided evidence that some natural bioactive compounds found in food and herbs can modulate gene expression by targeting different elements of the epigenetic machinery. Nutrients that are components of one‐carbon metabolism, such as folate, riboflavin, pyridoxine, cobalamin, choline, betaine and methionine, affect DNA methylation by regulating the levels of S‐adenosyl‐L‐methionine, a methyl group donor, and S‐adenosyl‐L‐homocysteine, which is an inhibitor of enzymes catalyzing the DNA methylation reaction. Other natural compounds target histone modifications and levels of non‐coding RNAs such as vitamin D, which recruits histone acetylases, or resveratrol, which activates the deacetylase sirtuin and regulates oncogenic and tumour suppressor micro‐RNAs. As epigenetic abnormalities have been shown to be both causative and contributing factors in different health conditions including cancer, natural compounds that are direct or indirect regulators of the epigenome constitute an excellent approach in cancer prevention and potentially in anti‐cancer therapy.


Gene | 2014

Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity

Marlene Remely; Eva Aumueller; Christine Merold; Simone Dworzak; Berit Hippe; Julia Zanner; Angelika Pointner; Helmut Brath; Alexander G. Haslberger

The human gut microbiota and microbial influences on lipid and glucose metabolism, satiety, and chronic low-grade inflammation are known to be involved in metabolic syndrome. Fermentation end products, especially short chain fatty acids, are believed to engage the epigenetic regulation of inflammatory reactions via FFARs (free fatty acid receptor) and other short chain fatty acid receptors. We studied a potential interaction of the microbiota with epigenetic regulation in obese and type 2 diabetes patients compared to a lean control group over a four month intervention period. Intervention comprised a GLP-1 agonist (glucagon-like peptide 1) for type 2 diabetics and nutritional counseling for both intervention groups. Microbiota was analyzed for abundance, butyryl-CoA:acetate CoA-transferase gene and for diversity by polymerase chain reaction and 454 high-throughput sequencing. Epigenetic methylation of the promoter region of FFAR3 and LINE1 (long interspersed nuclear element 1) was analyzed using bisulfite conversion and pyrosequencing. The diversity of the microbiota as well as the abundance of Faecalibacterium prausnitzii were significantly lower in obese and type 2 diabetic patients compared to lean individuals. Results from Clostridium cluster IV and Clostridium cluster XIVa showed a decreasing trend in type 2 diabetics in comparison to the butyryl-CoA:acetate CoA-transferase gene and according to melt curve analysis. During intervention no significant changes were observed in either intervention group. The analysis of five CpGs in the promoter region of FFAR3 showed a significant lower methylation in obese and type 2 diabetics with an increase in obese patients over the intervention period. These results disclosed a significant correlation between a higher body mass index and lower methylation of FFAR3. LINE-1, a marker of global methylation, indicated no significant differences between the three groups or the time points, although methylation of type 2 diabetics tended to increase over time. Our results provide evidence that a different composition of gut microbiota in obesity and type 2 diabetes affect the epigenetic regulation of genes. Interactions between the microbiota and epigenetic regulation may involve not only short chain fatty acids binding to FFARs. Therefore dietary interventions influencing microbial composition may be considered as an option in the engagement against metabolic syndrome.


PLOS ONE | 2011

Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting

Jutta Zwielehner; Cornelia Lassl; Berit Hippe; Angelika Pointner; Olivier J. Switzeny; Marlene Remely; Elvira Kitzweger; Reinhard Ruckser; Alexander G. Haslberger

Background We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. Methodology/Principal Findings Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. Conclusions/Significance Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C.difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.


Vaccine | 1999

New strategies for combination vaccines based on the extended recombinant bacterial ghost system.

Francis O. Eko; Angela Witte; Veronika Huter; B. Kuen; S. Fürst-Ladani; Alexander G. Haslberger; Astrid Katinger; Andreas Hensel; Michael P. Szostak; Stephanie Resch; H. Mader; P. Raza; Edith Brand; J. Marchart; Wolfgang Jechlinger; W. Haidinger; Werner Lubitz

Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts have been produced from a great variety of bacteria and are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extents the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens, immunomodulators or other substances. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in bacterial candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying inserts of foreign epitopes of up to 600 amino acids within the flexible surface loop areas of the S-layer further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts do not need the addition of adjuvants to induce immunity in experimental animals they can also be used as carriers or targeting vehicles or as adjuvants in combination with subunit vaccines. Matrixes like dextran which can be used to fill the internal lumen of ghosts can be substituted with various ligands to bind the subunit or other materials of interest. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of ghosts and recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in the production of ghosts. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. As carriers of foreign antigens there is no limitation in the size of foreign antigens to be inserted and the capacity of all spaces including the membranes, periplasma and internal lumen of the ghosts can be fully utilized. Using the different building blocks and combining them into the recombinant ghost system represents a new strategy for adjuvant free combination vaccines.


Food and Chemical Toxicology | 2000

Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods

W.K Novak; Alexander G. Haslberger

For a safety evaluation of foodstuff derived from genetically modified crops, the concept of the substantial equivalence of modified organisms with their parental lines is used following an environmental safety evaluation. To assess the potential pleiotropic effect of genetic modifications on constituents of modified crops data from US and EC documents were investigated with regard to inherent plant toxins and antinutrients. Analysed were documents of rape (glucosinolates, phytate), maize (phytate), tomato (tomatine, solanine, chaconine, lectins, oxalate), potato (solanine, chaconine, protease-inhibitors, phenols) and soybean (protease-inhibitors, lectins, isoflavones, phytate). In several documents used for notifications no declarations even on essential inherent plant toxins and antinutrients could be found, for instance data on phytate in modified maize were provided only in one of four documents. Significant variations in the contents of these compounds in parental and modified plants especially due to environmental influences were observed: drought stress, for example, was made responsible for significantly increased glucosinolate levels of up to 72.6micromol/g meal in modified and parental rape plants in field trials compared to recommended standard concentrations of less than 30micromol/g. Taking into account these wide natural variations generally the concentrations of inherent plant toxins and antinutrients in modified products were in the range of the concentrations in parental organisms. The results presented indicate that the concept of the substantial equivalence is useful for the risk assessment of genetically modified organisms (GMOs) used for novel foods but possible environmental influences on constituents of modified crops need more attention. Consistent guidelines, specifying data of relevant compounds which have to be provided for notification documents of specific organisms have to be established. Because of the importance of inherent plant toxins and antinutrients on nutritional safety, also coherent databases of standard parental lines and clear criteria for mandatory declarations are necessary.


Journal of Biotechnology | 2000

Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells.

Alexander G. Haslberger; G. Kohl; D. Felnerova; Ulrike Beate Mayr; S Fürst-Ladani; Werner Lubitz

Bacterial ghosts have been shown to be an innovative system to prepare vaccines of various bacteria with all features of the intact bacterial cell envelopes, especially all antigenic epitopes, but also to target recombinant proteins inserted in the cell envelopes of the ghost preparations to specific antigen presenting cells. To investigate the activation of the antigen presenting cell by bacterial ghosts in more detail we studied the uptake of bacterial ghosts in dendritic porcine cells and RAW macrophages and the induction of inflammatory mediators or mediators directing the immune response in THP-1 human macrophage cell line. The synthesis of inflammatory macrophage mediators such as TNFalpha in the THP1 cell line was stimulated by a hundred-fold higher dose of ghosts from Vibrio cholerae than the corresponding LPS using ELISA-analysis. These results confirm in vivo experiments indicating no toxic effects of ghosts in rabbits even after intravenous administration in doses stimulating significant humoral responses. We were also able to see a significant activation of IL-12 indicated by the analysis of IL-12(p70) synthesis and IL-12(p40) mRNA accumulation. This interleukine is of special importance in the activation of cellular TH1 immune responses. A rapid uptake of bacterial ghosts in macrophages within 10-30 min could be confirmed by electron microscopy. As antigen presentation is especially effective in porcine dendritic cells (DC) and even a low capacity of antigen uptake is sufficient for an induction of immune responses we investigated uptake and activation of bacterial ghosts by DC. DC are known to be phagocytic in specific immature stages. We found a significant uptake of bacterial ghosts from Actinobacillus pleuropneumoniae (App) and V. cholerae conjugated with FITC (fluorescinisothiocyanate) within 2 h. These data suggest that bacterial ghosts effectively stimulate monocytes and macrophages for the induction of TH1 directed immune responses and dendritic cells treated with bacterial ghosts may serve as a promising vehicle for active immunization and immunotherapy in situ.


Journal of Biotechnology | 1999

Extended recombinant bacterial ghost system

Werner Lubitz; Angela Witte; Francis O. Eko; M. Kamal; Wolfgang Jechlinger; Edith Brand; J. Marchart; Wolfgang Haidinger; Veronika Huter; D. Felnerova; N. Stralis-Alves; S. Lechleitner; H. Melzer; Michael P. Szostak; Stephanie Resch; H. Mader; B. Kuen; B. Mayr; P. Mayrhofer; R. Geretschläger; Alexander G. Haslberger; Andreas Hensel

Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts from a variety of bacteria are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extends the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying foreign epitopes further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts have inherent adjuvant properties, they can be used as adjuvants in combination with subunit vaccines. Subunits or other ligands can also be coupled to matrixes like dextran which are used to fill the internal lumen of ghosts. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in this production. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. The endotoxic component of the outer membrane does not limit the use of ghosts as vaccine candidates but triggers the release of several potent immunoregulatory cytokines. As carriers, there is no limitation in the size of foreign antigens that can be inserted in the membrane and the capacity of all spaces including the membranes, peri-plasma and internal lumen of the ghosts can be fully utilized. This extended recombinant ghost system represents a new strategy for adjuvant free combination vaccines.


Vaccine | 1997

Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines

Horst Mader; Michael P. Szostak; Andreas Hensel; Werner Lubitz; Alexander G. Haslberger

Gram-negative bacterial ghosts produced by controlled expression of the plasmid-encoded lysis gene E offers a promising approach in non-living vaccine technology. Bacterial cell wall complex and hence the antigenic determinants of the living cells are not affected by denaturation due to cell killing. However, the endotoxin content of the Gram-negative cell wall has been discussed as a potential problem for this kind of whole cell or envelope vaccines. Here we show that bacterial ghosts prepared from Escherichia coli O26:B6 and Salmonella typhimurium C5 induce dose-dependent antibody responses against bacterial cells or their corresponding lipopolysaccharides (LPS) in doses 25 ng kg-1 when administered intravenously to rabbits in a standard immunization protocol. No differences between the immune responses of the rabbits were observed when comparing equivalent doses of bacterial ghosts and antibiotic-treated whole cells. The results indicate that the bacterial ghosts exhibit all the antigenic properties of the living cells. No significant fever responses in rabbits have been recorded in doses of < 250 ng kg-1 E. coli O26:B6 ghosts and up to doses of 250 ng kg-1 S. typhimurium C5 ghosts when applying test methods recommended by the US pharmacopoeia. These findings correlate with cell culture experiments where doses 100 ng ml-1 of bacterial ghosts were needed for the release of tumour necrosis factor alpha (TNF alpha) and prostaglandin E2 (PGE2) from RAW mouse macrophage cultures. Free LPS of Salmonella abortus equi commonly used as a LPS-standard, however, stimulated TNF alpha and PGE2 synthesis of RAW cells in doses of 1 ng ml-1. The endotoxic activity of our bacterial preparations analysed by a standard limulus amoebocyte lysate and 2-keto-3-deoxyoctonate assay correlated with the capacity to stimulate the release of PGE2 and TNF alpha in RAW mouse macrophage cultures and the endotoxic responses in rabbits. It can be concluded that these in vitro systems can be used as easy predictive test systems for preparations of bacterial vaccines, particularly for bacterial ghosts.


Comparative Immunology Microbiology and Infectious Diseases | 2009

Preanalytic removal of human DNA eliminates false signals in general 16S rDNA PCR monitoring of bacterial pathogens in blood.

Michael Handschur; Heidrun Karlic; Christian Hertel; Michael Pfeilstöcker; Alexander G. Haslberger

PCR detection of microbial pathogens in blood from patients is a promising issue for rapid diagnosis of sepsis and early targeted therapy. However, for PCR assays detecting all bacterial groups, broad range primers, in particular the 16S rDNA targeting primers have to be used. Upcoming false signals and reduced sensitivity are a common problem as a consequence of unspecific amplification reactions with the human DNA background. Here we show that, using total DNA extracts from blood, unspecific signals occurred in general 16S rDNA PCRs as a result of the amplification of human sequences. To address this problem, we developed a protocol by which the human background DNA is removed and bacterial DNA is enriched during sample preparation, a method we termed background-free enrichment method (BFEM). In general, we aimed to exclude false signals due to the human background DNA yielded from 16S rDNA PCR, Real-Time-PCR and IGS-PCR analyses. We applied the BFEM to the analysis of blood samples from 22 patients and obtained results similar to standard blood culture methods. The BFEM allows specific and sensitive detection of pathogens in downstream PCR assays and is easy to handle due to the quick sample preparation procedure. Thus, the BFEM contributes to the generation of replicable and more reliable data in general 16S rDNA PCR assays.

Collaboration


Dive into the Alexander G. Haslberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid H. Gesche

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge