Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Berit Hippe is active.

Publication


Featured researches published by Berit Hippe.


Gene | 2014

Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity

Marlene Remely; Eva Aumueller; Christine Merold; Simone Dworzak; Berit Hippe; Julia Zanner; Angelika Pointner; Helmut Brath; Alexander G. Haslberger

The human gut microbiota and microbial influences on lipid and glucose metabolism, satiety, and chronic low-grade inflammation are known to be involved in metabolic syndrome. Fermentation end products, especially short chain fatty acids, are believed to engage the epigenetic regulation of inflammatory reactions via FFARs (free fatty acid receptor) and other short chain fatty acid receptors. We studied a potential interaction of the microbiota with epigenetic regulation in obese and type 2 diabetes patients compared to a lean control group over a four month intervention period. Intervention comprised a GLP-1 agonist (glucagon-like peptide 1) for type 2 diabetics and nutritional counseling for both intervention groups. Microbiota was analyzed for abundance, butyryl-CoA:acetate CoA-transferase gene and for diversity by polymerase chain reaction and 454 high-throughput sequencing. Epigenetic methylation of the promoter region of FFAR3 and LINE1 (long interspersed nuclear element 1) was analyzed using bisulfite conversion and pyrosequencing. The diversity of the microbiota as well as the abundance of Faecalibacterium prausnitzii were significantly lower in obese and type 2 diabetic patients compared to lean individuals. Results from Clostridium cluster IV and Clostridium cluster XIVa showed a decreasing trend in type 2 diabetics in comparison to the butyryl-CoA:acetate CoA-transferase gene and according to melt curve analysis. During intervention no significant changes were observed in either intervention group. The analysis of five CpGs in the promoter region of FFAR3 showed a significant lower methylation in obese and type 2 diabetics with an increase in obese patients over the intervention period. These results disclosed a significant correlation between a higher body mass index and lower methylation of FFAR3. LINE-1, a marker of global methylation, indicated no significant differences between the three groups or the time points, although methylation of type 2 diabetics tended to increase over time. Our results provide evidence that a different composition of gut microbiota in obesity and type 2 diabetes affect the epigenetic regulation of genes. Interactions between the microbiota and epigenetic regulation may involve not only short chain fatty acids binding to FFARs. Therefore dietary interventions influencing microbial composition may be considered as an option in the engagement against metabolic syndrome.


PLOS ONE | 2011

Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting

Jutta Zwielehner; Cornelia Lassl; Berit Hippe; Angelika Pointner; Olivier J. Switzeny; Marlene Remely; Elvira Kitzweger; Reinhard Ruckser; Alexander G. Haslberger

Background We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. Methodology/Principal Findings Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. Conclusions/Significance Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C.difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.


Beneficial Microbes | 2014

Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity

Marlene Remely; Eva Aumueller; D. Jahn; Berit Hippe; H. Brath; Alexander G. Haslberger

Metabolic syndrome is associated with alterations in the structure of the gut microbiota leading to low-grade inflammatory responses. An increased penetration of the impaired gut membrane by bacterial components is believed to induce this inflammation, possibly involving epigenetic alteration of inflammatory molecules such as Toll-like receptors (TLRs). We evaluated changes of the gut microbiota and epigenetic DNA methylation of TLR2 and TLR4 in three groups of subjects: type 2 diabetics under glucagon-like peptide-1 agonist therapy, obese individuals without established insulin resistance, and a lean control group. Clostridium cluster IV, Clostridium cluster XIVa, lactic acid bacteria, Faecalibacterium prausnitzii and Bacteroidetes abundances were analysed by PCR and 454 high-throughput sequencing. The epigenetic methylation in the regulatory region of TLR4 and TLR2 was analysed using bisulfite conversion and pyrosequencing. We observed a significantly higher ratio of Firmicutes/ Bacteroidetes in type 2 diabetics compared to lean controls and obese. Major differences were shown in lactic acid bacteria, with the highest abundance in type 2 diabetics, followed by obese and lean participants. In comparison, F. prausnitzii was least abundant in type 2 diabetics, and most abundant in lean controls. Methylation analysis of four CpGs in the first exon of TLR4 showed significantly lower methylation in obese individuals, but no significant difference between type 2 diabetics and lean controls. Methylation of seven CpGs in the promoter region of TLR2 was significantly lower in type 2 diabetics compared to obese subjects and lean controls. The methylation levels of both TLRs were significantly correlated with body mass index. Our data suggest that changes in gut microbiota and thus cell wall components are involved in the epigenetic regulation of inflammatory reactions. An improved diet targeted to induce gut microbial balance and in the following even epigenetic changes of pro-inflammatory genes may be effective in the prevention of metabolic syndrome.


Fems Microbiology Letters | 2011

Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age

Berit Hippe; Jutta Zwielehner; Kathrin Liszt; Cornelia Lassl; Frank Unger; Alexander G. Haslberger

The gastrointestinal microbiota produces short-chain fatty acids, especially butyrate, which affect colonic health, immune function and epigenetic regulation. To assess the effects of nutrition and aging on the production of butyrate, the butyryl-CoA:acetate CoA-transferase gene and population shifts of Clostridium clusters lV and XlVa, the main butyrate producers, were analysed. Faecal samples of young healthy omnivores (24 ± 2.5 years), vegetarians (26 ± 5 years) and elderly (86 ± 8 years) omnivores were evaluated. Diet and lifestyle were assessed in questionnaire-based interviews. The elderly had significantly fewer copies of the butyryl-CoA:acetate CoA-transferase gene than young omnivores (P=0.014), while vegetarians showed the highest number of copies (P=0.048). The thermal denaturation of the butyryl-CoA:acetate CoA-transferase gene variant melting curve related to Roseburia/Eubacterium rectale spp. was significantly more variable in the vegetarians than in the elderly. The Clostridium cluster XIVa was more abundant in vegetarians (P=0.049) and in omnivores (P<0.01) than in the elderly group. Gastrointestinal microbiota of the elderly is characterized by decreased butyrate production capacity, reflecting increased risk of degenerative diseases. These results suggest that the butyryl-CoA:acetate CoA-transferase gene is a valuable marker for gastrointestinal microbiota function.


Annals of Nutrition and Metabolism | 2009

Characterization of Bacteria, Clostridia and Bacteroides in Faeces of Vegetarians Using qPCR and PCR-DGGE Fingerprinting

Kathrin Liszt; Jutta Zwielehner; Michael Handschur; Berit Hippe; Roman Thaler; Alexander G. Haslberger

Background/Aims: This study aimed to investigate the quantitative and qualitative changes of bacteria, Bacteroides, Bifidobacterium and Clostridium cluster IV in faecal microbiota associated with a vegetarian diet. Methods: Bacterial abundances were measured in faecal samples of 15 vegetarians and 14 omnivores using quantitative PCR. Diversity was assessed with PCR-DGGE fingerprinting, principal component analysis (PCA) and Shannon diversity index. Results: Vegetarians had a 12% higher abundance of bacterial DNA than omnivores, a tendency for less Clostridium cluster IV (31.86 ± 17.00%; 36.64 ± 14.22%) and higher abundance of Bacteroides (23.93 ± 10.35%; 21.26 ± 8.05%), which were not significant due to high interindividual variations. PCA suggested a grouping of bacteria and members of Clostridium cluster IV. Two bands appeared significantly more frequently in omnivores than in vegetarians (p < 0.005 and p < 0.022). One was identified as Faecalibacterium sp. and the other was 97.9% similar to the uncultured gut bacteriumDQ793301. Conclusions: A vegetarian diet affects the intestinal microbiota, especially by decreasing the amount and changing the diversity of Clostridium cluster IV. It remains to be determined how these shifts might affect the host metabolism and disease risks.


Wiener Klinische Wochenschrift | 2015

Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study

Marlene Remely; Berit Hippe; Isabella Geretschlaeger; Sonja Stegmayer; Ingrid Hoefinger; Alexander G. Haslberger

SummaryBackgroundAn impaired gut microbiota has been reported as an important factor in the pathogenesis of obesity. Weight reduction has already been mentioned to improve gut microbial subpopulations involved in inflammatory processes, though other subpopulations still need further investigation. Thus, weight reduction in the context of a fasting program together with a probiotic intervention may improve the abundance and diversity of gut microbiota.MethodsIn this pilot study, overweight people underwent a fasting program with laxative treatment for 1 week followed by a 6 week intervention with a probiotic formula. Gut microbiota were analyzed on the basis of 16s rDNA with a quantitative real time polymerase chain reaction. Additionally, a food frequency questionnaire with questions about nutritional behavior, lifestyle, and physical activity was administered before and after the intervention.ResultsWe observed an increase in microbial diversity over the study period. No significant changes in abundance of total bacteria, or of Bacteroidetes, Prevotella, Clostridium cluster XIVa, or Clostridium cluster IV were found, although Faecalibacterium prausnitzii showed an increase over the study period. In addition, Akkermanisa and Bifidobacteria increased in abundance due to intervention. The inflammation-associated gut microbes Enterobacteria and Lactobacilli increased during the first week and then declined by the end of the intervention. Two-thirds of the study participants harbored Archaea. No significant improvements of eating habits were reported, although physical activity improved due to the intervention.ConclusionsOur results show that caloric restriction affects gut microbiota by proliferating mucin-degrading microbial subpopulations. An additional intervention with a probiotic formula increased probiotic-administered gut microbial populations.


Food and Agricultural Immunology | 2013

Effects of antibiotic therapy on the gastrointestinal microbiota and the influence of Lactobacillus casei

Angelika Pirker; Alexander Stockenhuber; Marlene Remely; Anna Harrant; Berit Hippe; Christoph Kamhuber; Krista Adelmann; Felix Stockenhuber; Alexander G. Haslberger

Aims of methods Effects of intervention with Lactobacillus casei Shirota (LcS) on the incidence of antibiotic-associated diarrhoea (AAD), Clostridium difficile infection (CDI) and changes in faecal microbiota were analysed using C. difficile ELISA (678 patients), qPCR using 16S rRNA group-specific primers, C. difficile-toxin kit and polymerase chain reaction/denaturing gradient gel electrophoresis (56 patients). Results Results As much as 18.5% of antibiotic treated group developed AAD, but only 5% of patients treated with antibiotics and LcS. Following antibiotic therapy, a decrease in the abundance of total Bacteria, Clostridium cluster IV and XI, Bifidobacterium spp. and butyryl-CoA CoA transferase genes was observed, whereas Enterobacteriaceae increased. LcS intervention reduced the antibiotic-associated decrease in the diversity of microbiota, increased the abundance of Lactobacillus spp. and reduced the antibiotic-induced decrease of Bifidobacterium spp. Conclusions Antibiotic treatment affects the diversity and the composition of the microbiota impairing butyrate production. Intervention with certain Lactobacillus strains may antagonise some of these changes, and more potent short-chain fatty acid-stimulating probiotics are desirable for intervention in AAD.


Endocrine‚ Metabolic & Immune Disorders-Drug Targets | 2016

Gut Microbiota of Obese, Type 2 Diabetic Individuals is Enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after Weight Loss

Marlene Remely; Berit Hippe; Julia Zanner; Eva Aumueller; Helmuth Brath; Alexander G. Haslberger

BACKGROUND Beside the influence of nutritional habits and reduced physical activity, metabolic syndrome is associated with alterations in the structure of gut microbiota influencing the inflammatory immune responses. Gut microbiota and microbial metabolic activities are known to affect the lipid and glucose metabolism, satiety and chronic low-grade inflammation in the metabolic syndrome. The aim of the study was to identify genera or even species affecting host metabolism in obesity and type 2 diabetes beside the common used indicator: Firmicutes/ Bacteroidetes ratio. METHODS Differences in gut microbiota were investigated in three groups of subjects over a four month intervention period: type 2 diabetics under GLP1-Agonist therapy, obese individuals without established insulin resistance, both receiving nutritional counseling concerning weight reduction, and a lean control group. Collection of fecal samples was accomplished at two time points, before treatment, and after four months of treatment. For identification of bacteria at species-level we used 454 high-throughput sequencing and fragment length polymorphism analysis based on IS-pro (Intergenic-Spacer-profiling). Five bacterial species, two bacterial genera, total bacterial abundance, and the Firmicutes/Bacteroidetes ratio were determined. RESULTS Type 2 diabetics showed a higher Firmicutes/Bacteroidetes ratio even with an increase to the second time point (p=0.07). The abundance of B. thetaiotaomicron remained unaffected, whereas B. vulgatus significantly increased in type 2 diabetics (p=0.07) over the study period. Either Alistipes spp. showed an increase in type 2 diabetics between the time points (p=0.06). The abundance of F. prausnitzii (p=0.03) and A. muciniphila (p=0.03) also increased in type 2 diabetics over study period. In addition, the concentration of P. anaerobius (p=0.03) was significantly higher in type 2 diabetics after intervention compared to lean and obese controls. CONCLUSION Our results clearly show a difference in the gut bacterial composition in type 2 diabetics compared to lean controls or obesity. Therefore, the ratio of Fimicutes/Bacteroidetes might only be an indicator, but a detailed view at species level is even more important in regard to distinction of their functions.


Beneficial Microbes | 2016

Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects

Berit Hippe; Marlene Remely; Eva Aumueller; A. Pointner; U. Magnet; Alexander G. Haslberger

Faecalibacterium prausnitzii is one of the main butyrate producers in the healthy human gut. Information on its genetic diversity is lacking, although two genetic phylotypes have been differentiated. In the present study, F. prausnitzii phylotypes were examined in faeces of obese and type two diabetes with similar eating behaviour compared to a lean control group. The purpose of the study was to analyse if an excessive butyrate production induced by different F. prausnitzii phylotypes discriminates between obese developing type two diabetes or not. The faecal samples were analysed for the total abundance of F. prausnitzii 16S rRNA copies, fragment lengths polymorphism, high resolution melt curve analysis (HRM) and the butyryl-CoA:acetate CoA-transferase gene copies and melt curve variances. The diabetic group was found to differ significantly from the lean control group in the results of qPCR, butyryl-CoA:acetyate CoA-transferase gene melt curve, and HRM. F. prausnitzii phylotypes differed in obese with and without developed diabetes type two. Different phylotypes of F. prausnitzii may lead to differences in the inflammatory genesis in the host. F. prausnitzii phylotypes may have an influence on developing type two diabetes and might also act as starting points for prevention and therapy of obesity associated disease.


Endocrine‚ Metabolic & Immune Disorders-Drug Targets | 2014

Abundance and Diversity of GI Microbiota Rather than IgG 4 Levels Correlate with Abdominal Inconvenience and Gut Permeability in Consumers Claiming Food Intolerances

Berit Hippe; Marlene Remely; Natalie Bartosiewicz; Monika Riedel; Claudia Nichterl; Lulit Schatz; Sandra Pummer; Alexander G. Haslberger

Food intolerances are an increasing global health problem. Interactions between genetics and environmental changes such as microbial- and stress factors remain poorly understood. Whereas the analyses of IgE mediated allergic responses is based on solid concepts, the roles of microbiota, gut permeability, and IgG antibodies remain widely unclear and are under fierce discussion for scientific relevance. The present pilot study analyzes forty participants, under consultation of nutritional health professionals, for gastrointestinal discomfort and claimed food intolerances. Food frequency questionnaire addresses nutrition, lifestyle and present discomfort. Feces samples are analyzed for dominant microbiota using 16S rDNA based methods and the fecal marker Calprotectin. Blood samples are analyzed for IgG4 levels. The total microbial abundance significantly correlates with claimed discomfort (R=-0.37; p=0.02). The abundance and diversity of microbiota significantly correlates with low Calprotectin values (R=-0.35; p=0.01) and with higher abundance of Faecalibacterium prausnitzii (R=0.78; p<0.01) and Akkermansia (R=0.82; p<0.01). Participants with low discomfort show enhanced Clostridium Cluster XIVa (p=0.008). An increased diversity is also correlating with reduced antibodies against IgG4 of egg white (R=0.68; p<0.01). Data suggest an interaction of low gut permeability and reduced inflammation with an established microbial equilibrium. Self-reported abdominal inconvenience of participants relates mainly to characteristics of microbiota and gut permeability. Anti-inflammatory effects of Faecalibacterium prausnitzii or Lactobacilli and gut barrier functions of Akkermansia may have a key role in food intolerances. The role of IgG4 linking food immune responses with intolerances remains unclear.

Collaboration


Dive into the Berit Hippe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge