Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander G. Obukhov is active.

Publication


Featured researches published by Alexander G. Obukhov.


Nature | 1999

Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol

Thomas Hofmann; Alexander G. Obukhov; Michael Schaefer; Christian Harteneck; Thomas Gudermann; Günter Schultz

Eukaryotic cells respond to many hormones and neurotransmitters with increased activity of the enzyme phospholipase C and a subsequent rise in the concentration of intracellular free calcium ([Ca2+]i). The increase in [Ca2+]i occurs as a result of the release of Ca2+ from intracellular stores and an influx of Ca2+ through the plasma membrane; this influx of Ca2+ may or may not be store-dependent. Drosophila transient receptor potential (TRP) proteins and some mammalian homologues (TRPC proteins) are thought to mediate capacitative Ca2+ entry. Here we describe the molecular mechanism of store-depletion-independent activation of a subfamily of mammalian TRPC channels. We find that hTRPC6 is a non-selective cation channel that is activated by diacylglycerol in a membrane-delimited fashion, independently of protein kinases C activated by diacylglycerol. Although hTRPC3, the closest structural relative of hTRPC6, is activated in the same way, TRPCs 1, 4 and 5 and the vanilloid receptor subtype 1 are unresponsive to the lipid mediator. Thus, hTRPC3 and hTRPC6 represent the first members of a new functional family of second-messenger-operated cation channels, which are activated by diacylglycerol.


Neuroscience | 1988

Cationic channels activated by extracellular atp in rat sensory neurons

O.A. Krishtal; S.M. Marchenko; Alexander G. Obukhov

Single channels activated by externally applied ATP were investigated in cultured sensory neurons from nodosal and spinal ganglia of rat using patch clamp and concentration clamp methods. Mean conductance of single ATP-activated channels was 17 pS when measured at a holding potential of -75 mV in saline containing 3 mM Ca2+ and 1 mM Mg2+. Sublevels of conductance were detected in some cases. The current-voltage relationship for a single channel is highly non-linear and demonstrates inwardly directed rectification. The I-V curve obtained for single channels was identical to that for macroscopic current. ATP activated the channels in the absence of divalent cations (in ethylenediaminetetra-acetate-containing medium) as well as in their presence. This indicates that ATP as a free anion can activate the receptor. Ca2+ ions decreased both macro- and microscopic ATP-activated currents. The concentration dependence of this Ca2+ effect does not fit a single site binding isotherm. The single channel current demonstrated prominent fluctuations. When measured in the 0-4 kHz frequency band the amplitude of fluctuations evaluated as a double r.m.s. was about 30% of the mean amplitude of current. The autocorrelation function for the current fluctuations in an open channel could be approximated by a single exponential with the time constant of 0.4 ms. These fluctuations did not depend on the presence of divalent cations in the external medium. The open time distribution for the investigated channels could be described by a sum of two exponentials. Presumably this reflects the existence of two subtypes of ATP-activated channels.


The Journal of Neuroscience | 2007

Induction of Calcium Influx through TRPC5 Channels by Cross-Linking of GM1 Ganglioside Associated with α5β1 Integrin Initiates Neurite Outgrowth

Gusheng Wu; Zi Hua Lu; Alexander G. Obukhov; Martha C. Nowycky; Robert W. Ledeen

Previous studies demonstrated that cross-linking of GM1 ganglioside with multivalent ligands, such as B subunit of cholera toxin (CtxB), induced Ca2+ influx through an unidentified, voltage-independent channel in several cell types. Application of CtxB to undifferentiated NG108-15 cells resulted in outgrowth of axon-like neurites in a Ca2+ influx-dependent manner. In this study, we demonstrate that CtxB-induced Ca2+ influx is mediated by TRPC5 channels, naturally expressed in these cells and primary neurons. Both Ca2+ influx and neurite induction were blocked by TRPC5 small interfering RNA (siRNA). Pretreatment of NG108-15 cells with neuraminidase increased cell-surface GM1 and greatly enhanced the signal. GM1 was not directly associated with TRPC5 but rather with α5β1 integrin, which opened the channel through a signaling sequence after cross-linking of the GM1/integrin complex. This cascade included autophosphorylation of focal adhesion kinase and subsequent activation of phospholipase Cγ (PLCγ) and phosphoinositide-3 kinase [PI(3)K]. Pharmacological blockers that inhibited tyrosine kinase, PLC, and PI(3)K suppressed both CtxB-induced Ca2+ influx and neurite outgrowth. These were also suppressed by SK&F96365, a nonspecific transient receptor potential channel blocker. Confocal immunocytochemistry revealed that GM1 cross-linking induced colocalization of GM1 with these signaling elements in sprouting regions of plasma membrane. In primary cerebellar granular neurons (CGNs), TRPC5 was detected at 2 d in vitro (2 DIV), a stage corresponding to CtxB-stimulated Ca2+ influx. Neurite outgrowth in CGNs, determined at 3 DIV, was accelerated by CtxB and suppressed by TRPC5 siRNA and the above blockers. The crucial role of GM1 was indicated with CGNs from ganglio-series null mice, in which growth of axons was significantly retarded.


Cardiovascular Research | 2010

Exercise training decreases store-operated Ca2+entry associated with metabolic syndrome and coronary atherosclerosis

Jason M. Edwards; Zachary P. Neeb; Mouhamad Alloosh; Xin Long; Ian N. Bratz; Cassandra R. Peller; James P. Byrd; Sanjay Kumar; Alexander G. Obukhov; Michael Sturek

AIMS Stenting attenuates restenosis, but accelerated coronary artery disease (CAD) adjacent to the stent (peri-stent CAD) remains a concern in metabolic syndrome (MetS). Smooth muscle cell proliferation, a major mechanism of CAD, is mediated partly by myoplasmic Ca2+ dysregulation and store-operated Ca2+ entry (SOCE) via canonical transient receptor potential 1 (TRPC1) channels is proposed to play a key role. Exercise is known to prevent Ca2+ dysregulation in CAD. We tested the hypothesis that MetS increases SOCE and peri-stent CAD and exercise attenuates these events. METHODS AND RESULTS Groups (n = 9 pigs each) were (i) healthy lean Ossabaw swine fed standard chow, (ii) excess calorie atherogenic diet fed (MetS), and (iii) aerobically exercise trained starting after 50 weeks of development of MetS (XMetS). Bare metal stents were placed after 54 weeks on diets, and CAD and SOCE were assessed 4 weeks later. Coronary cells were dispersed proximal to the stent (peri-stent) and from non-stent segments, and fura-2 fluorescence was used to assess SOCE, which was verified by Ni2+ blockade and insensitivity to nifedipine. XMetS pigs had increased physical work capacity and decreased LDL/HDL (P < 0.05), but no attenuation of robust insulin resistance, glucose intolerance, hypertriglyceridaemia, or hypertension. CAD was greater in peri-stented vs. non-stented artery segments. MetS had the greatest CAD, SOCE, and TRPC1 and STIM1 mRNA and protein expression, which were all attenuated in XMetS. CONCLUSION This is the first report of the protective effect of exercise on native CAD, peri-stent CAD, SOCE, and molecular expression of TRPC1, STIM1, and Orai1 in MetS.


Chemistry & Biology | 2010

Small molecule activators of TRPML3

Christian Grimm; Simone Jörs; S Adrian Saldanha; Alexander G. Obukhov; Bifeng Pan; Kazuo Oshima; Math P. Cuajungco; Peter Chase; Peter Hodder; Stefan Heller

We conducted a high-throughput screen for small molecule activators of the TRPML3 ion channel, which, when mutated, causes deafness and pigmentation defects. Cheminformatics analyses of the 53 identified and confirmed compounds revealed nine different chemical scaffolds and 20 singletons. We found that agonists strongly potentiated TRPML3 activation with low extracytosolic [Na(+)]. This synergism revealed the existence of distinct and cooperative activation mechanisms and a wide dynamic range of TRPML3 activity. Testing compounds on TRPML3-expressing sensory hair cells revealed the absence of activator-responsive channels. Epidermal melanocytes showed only weak or no responses to the compounds. These results suggest that TRPML3 in native cells might be absent from the plasma membrane or that the protein is a subunit of heteromeric channels that are nonresponsive to the activators identified in this screen.


Journal of Cellular Physiology | 2004

TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50)†

Alexander G. Obukhov; Martha C. Nowycky

TRPC1‐7 proteins are members of a family of mammalian non‐specific cation channels that mediate receptor‐operated, phospholipase Cβ/Cγ dependent Ca2+ influx in various cell types. TRPC4 and TRPC5 form a subfamily within TRPCs. Uniquely in the TRPC family, these channels possess a C‐terminal “VTTRL” motif that binds to PDZ‐domains of the scaffolding protein, EBP50 (NHERF1; Tang et al., J Biol Chem 275:37559–37564). The functional effects of EBP50 on TRPC4/5 activity have not been investigated. We have cloned rat TRPC5 (rTRPC5), functionally expressed it in HEK293 cell, and studied channel regulation with patch‐clamp techniques. Both rTRPC5 and its VTTRL deletion mutant (r5dV) were localized to the plasma membrane. rTRPC5 did not display any significant basal activity in unstimulated HEK293 cells. In cells co‐expressing rTRPC5 and H1 histamine receptor, rTRPC5 current evoked by GTPγS or histamine developed in two phases: a slowly developing, small inward current was followed by a rapidly developing, transient, large inward current. Each phase had a characteristic non‐linear current–voltage (I–V) relationship. Deletion of the VTTRL motif had no detectable effect on the biophysical properties of the channel. Co‐expression of EBP50 with rTRPC5 caused a significant delay in the time‐to‐peak of the histamine‐evoked, transient large inward current. EBP50 did not modify the activation kinetics of the VTTRL‐deletion mutant. We conclude that the VTTRL motif is not necessary for activation of TRPC5, but may mediate the modulatory effect of EBP50 on TRPC5 activation kinetics.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Primary cilia signaling mediates intraocular pressure sensation.

Na Luo; Michael Conwell; Xingjuan Chen; Christine Insinna Kettenhofen; Christopher J. Westlake; Louis B. Cantor; Clark D. Wells; Robert N. Weinreb; Timothy W. Corson; Dan F. Spandau; Karen M. Joos; Carlo Iomini; Alexander G. Obukhov; Yang Sun

Significance This study defines a cellular mechanism by which primary cilia mediate mechanosensation in intraocular pressure regulation. Changes in pressure are sensed by the interaction of the inositol phosphatase OCRL with transient receptor potential vanilloid 4 (TRPV4), a primary cilia-based calcium channel. Pediatric glaucoma (Lowe) syndrome patient cells with defective OCRL failed to respond to agonists of TRPV4, and targeting of TRPV4 lowered intraocular pressure in vivo. These findings significantly advance the current understanding of how intraocular pressure is regulated. Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-β, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems.


Molecular Endocrinology | 2009

Canonical Transient Receptor Potential Channels Expression Is Elevated in a Porcine Model of Metabolic Syndrome

Guoqing Hu; Elena A. Oboukhova; Sanjay Kumar; Michael Sturek; Alexander G. Obukhov

Plasma epinephrine and heart rate are elevated in metabolic syndrome, suggesting enhanced catecholamine secretion from the adrenal medulla. Canonical transient receptor potential (TRPC) channels are implicated in mediating hormone-induced Ca(2+) influx and catecholamine secretion in adrenomedullary chromaffin cells. We studied the pattern of TRPC expression in the pig adrenal medulla and investigated whether adrenal TRPC expression is altered in prediabetic metabolic syndrome Ossabaw miniature pigs. We used a combination of molecular biological, biochemical, and fluorescence imaging techniques. We determined the sequence of pig TRPC1 and TRPC3-7 channels. We found that the pig adrenal medulla expressed predominantly TRPC1, TRPC5, and TRPC6 transcripts. The expression level of these TRPCs was significantly elevated in the adrenal medulla from pigs with metabolic syndrome. Interestingly, aldosterone, which is endogenously secreted in the adjacent adrenal cortex, increased TRPC1, TRPC5, and TRPC6 expression in adrenal chromaffin cells isolated from metabolic syndrome but not control pigs. Spironolactone, a blocker of mineralocorticoid receptors, inhibited the aldosterone effect. Dexamethasone also increased TRPC5 expression in metabolic syndrome chromaffin cells. The amplitude of hormone-induced divalent cation influx correlated with the level of TRPC expression in adrenal chromaffin cells. Orai1/Stim1 protein expression was not significantly altered in the metabolic syndrome adrenal medulla when compared with the control. We propose that in metabolic syndrome, abnormally elevated adrenal TRPC expression may underlie increased plasma epinephrine and heart rate. The excess of plasma catecholamines and increased heart rate are risk factors for cardiovascular disease. Thus, TRPCs are potential therapeutic targets in the fight against cardiovascular disease.


The Journal of Steroid Biochemistry and Molecular Biology | 2007

New Insights into the Function and Regulation of Vitamin D Target Proteins

Sylvia Christakos; Puneet Dhawan; Xiaorong Peng; Alexander G. Obukhov; Martha C. Nowycky; Bryan S. Benn; Yan Zhong; Yan Liu; Qi Shen

Calbindin-D(28k) has been reported to be a facilitator of calcium diffusion and to protect against apoptotic cell death. Most recently, we found that the presence of calbindin-D(28k) results in reduced calcium influx through voltage-dependent L-type Ca(2+) channels and enhanced sensitivity of the channels to calcium dependent inactivation. Co-immunoprecipitation and GST pull down assays indicate that calbindin-D(28k) interacts with the C-terminus of the L-type calcium channel alpha(1c) subunit (Ca(v)1.2). This is the first report of the binding of calbindin to a calcium channel and provides new insight concerning mechanisms by which calbindin acts to modulate intracellular calcium. Besides calbindin, another major target of 1,25(OH)(2)D(3) is 24(OH)ase, which is involved in the catabolism of 1,25(OH)(2)D(3). We reported that C/EBPbeta is a major transcriptional activator of 24(OH)ase that cooperates with CBP/p300 in regulating VDR mediated 24(OH)ase transcription. Recently, we found, in addition to p160 coactivators, that SWI/SNF complexes (that facilitate transcription by remodeling chromatin using the energy of ATP hydrolysis) are also involved in VDR mediated 24(OH)ase transcription and functionally cooperate with C/EBPbeta in regulating 24(OH)ase. These findings define novel mechanisms that may be of fundamental importance in understanding how 1,25(OH)(2)D(3) mediates its multiple biological effects.


Journal of Biological Chemistry | 2015

Human SLC4A11 is a Novel NH3: H+ Co-transporter

Wenlin Zhang; Diego Gabriel Ogando; Joseph A. Bonanno; Alexander G. Obukhov

Background: Mutations in SLC4A11 result in corneal endothelial dystrophies; however, the transport characteristics of this membrane protein remain unclear. Results: SLC4A11 showed NH4Cl-dependent currents indicative of a NH3/H+ electrogenic co-transport mode. Conclusion: SLC4A11 is a novel NH3/H+ co-transporter, uncharacteristic of the SLC4 bicarbonate transporter family. Significance: SLC4A11 ammonia transport capacity should be considered along with other NH3 transporters/channels when examining tissue nitrogen homeostasis. SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na+, H+ (OH−), bicarbonate, borate, and NH4+. Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4+, Na+, and H+ contributions to electrogenic ion transport through SLC4A11 stably expressed in Na+/H+ exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4+]o, and current amplitudes varied with the [H+] gradient. These currents were relatively unaffected by removal of Na+, K+, or Cl− from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H+-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H+). NH3-dependent currents were insensitive to 10 μm ethyl-isopropyl amiloride or 100 μm 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid. We propose that SLC4A11 is an NH3/2H+ co-transporter exhibiting unique characteristics.

Collaboration


Dive into the Alexander G. Obukhov's collaboration.

Top Co-Authors

Avatar

Xingjuan Chen

Indiana University – Purdue University Indianapolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha C. Nowycky

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge