Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johnathan D. Tune is active.

Publication


Featured researches published by Johnathan D. Tune.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Epicardial Perivascular Adipose-Derived Leptin Exacerbates Coronary Endothelial Dysfunction in Metabolic Syndrome via a Protein Kinase C-β Pathway

Gregory A. Payne; Léna Borbouse; Sajel Kumar; Zachary P. Neeb; Mouhamad Alloosh; Michael Sturek; Johnathan D. Tune

Objective—Factors released by perivascular adipose tissue (PVAT) disrupt coronary endothelial function via phosphorylation of endothelial NO synthase by protein kinase C (PKC)-&bgr;. However, our understanding of how PVAT potentially contributes to coronary disease as a complication of obesity/metabolic syndrome (MetS) remains limited. The current study investigated whether PVAT-derived leptin impairs coronary vascular function via PKC-&bgr; in MetS. Methods and Results—Coronary arteries with and without PVAT were collected from lean or MetS Ossabaw miniature swine for isometric tension studies. Endothelial-dependent vasodilation to bradykinin was significantly reduced in MetS. PVAT did not affect bradykinin-mediated dilation in arteries from lean swine but significantly exacerbated endothelial dysfunction in arteries from MetS swine. PVAT-induced impairment was reversed by inhibition of either PKC-&bgr; with ruboxistaurin (Eli Lilly and Company, Indianapolis, Ind) or leptin receptor signaling with a recombinant, pegylated leptin antagonist. Western blot and immunohistochemical analyses demonstrated increased PVAT-derived leptin and coronary leptin receptor density with MetS. Coronary PKC-&bgr; activity was increased in both MetS arteries exposed to PVAT and lean arteries exposed to leptin. Finally, leptin-induced endothelial dysfunction was reversed by ruboxistaurin. Conclusion—Increases in epicardial PVAT leptin exacerbate coronary endothelial dysfunction in MetS via a PKC-&bgr;-dependent pathway. These findings implicate PVAT-derived leptin as a potential contributor to coronary atherogenesis in MetS.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Hydrogen Peroxide A Feed-Forward Dilator That Couples Myocardial Metabolism to Coronary Blood Flow

Shu Ichi Saitoh; Cuihua Zhang; Johnathan D. Tune; Barry J. Potter; Takahiko Kiyooka; Paul A. Rogers; Jarrod D. Knudson; Gregory M. Dick; Albert N. Swafford; William M. Chilian

Objective—We tested the hypothesis that hydrogen peroxide (H2O2), the dismutated product of superoxide (O2·−), couples myocardial oxygen consumption to coronary blood flow. Accordingly, we measured O2·− and H2O2 production by isolated cardiac myocytes, determined the role of mitochondrial electron transport in the production of these species, and determined the vasoactive properties of the produced H2O2. Methods and Results—The production of O2·− is coupled to oxidative metabolism because inhibition of complex I (rotenone) or III (antimycin) enhanced the production of O2·− during pacing by about 50% and 400%, respectively; whereas uncoupling oxidative phosphorylation by decreasing the protonmotive force with carbonylcyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP) decreased pacing-induced O2·− production. The inhibitor of cytosolic NAD(P)H oxidase assembly, apocynin, did not affect O2·− production by pacing. Aliquots of buffer from paced myocytes produced vasodilation of isolated arterioles (peak response 67±8% percent of maximal dilation) that was significantly reduced by catalase (5±0.5%, P<0.05) or the antagonist of Kv channels, 4-aminopyridine (18±4%, P<0.05). In intact animals, tissue concentrations of H2O2 are proportionate to myocardial oxygen consumption and directly correlated to coronary blood flow. Intracoronary infusion of catalase reduced tissue levels of H2O2 by 30%, and reduced coronary flow by 26%. Intracoronary administration of 4-aminopyridine also shifted the relationship between myocardial oxygen consumption and coronary blood flow or coronary sinus po2. Conclusions—Taken together, our results demonstrate that O2·− is produced in proportion to cardiac metabolism, which leads to the production of the vasoactive reactive oxygen species, H2O2. Our results further suggest that the production of H2O2 in proportion to metabolism couples coronary blood flow to myocardial oxygen consumption.


Experimental Biology and Medicine | 2002

Control of Coronary Blood Flow during Exercise

Johnathan D. Tune; Keith Neu Richmond; Mark W. Gorman; Eric O. Feigl

Under normal physiological conditions, coronary blood flow is closely matched with the rate of myocardial oxygen consumption. This matching of flow and metabolism is physiologically Important due to the limited oxygen extraction reserve of the heart. Thus, when myocardial oxygen consumption is increased, as during exercise, coronary vasodilation and increased oxygen delivery are critical to preventing myocardial underperfusion and Ischemia. Exercise coronary vasodilation is thought to be mediated primarily by the production of local metabolic vasodilators released from cardiomyocytes secondary to an increase in myocardial oxygen consumption. However, despite various investigations into this mechanism, the medlator(s) of metabolic coronary vasodilation remain unknown. As will be seen in this review, the adenosine, K+ATP channel and nitric oxide hypotheses have been found to be inadequate, either alone or in combination as multiple redundant compensatory mechanisms. Prostaglandins and potassium are also not important in steady-state coronary flow regulation. Other factors such as ATP and endothelium-derived hyperpolarizing factors have been proposed as potential local metabolic factors, but have not been examined during exercise coronary vasodilation. In contrast, norepinephrine released from sympathetic nerve endings mediates a feed-forward ß-adrenoceptor coronary vasodilation that accounts for -25% of coronary vasodilation observed during exercise. There is also a feed-forward α-adrenoceptor-mediated vasoconstriction that helps maintain blood flow to the vulnerable subendocardium when heart rate, myocardial contractility, and oxygen consumption are elevated during exercise. Control of coronary blood flow during pathophysiological conditions such as hypertension, diabetes mellitus, and heart failure is also addressed.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome

Ian N. Bratz; Gregory M. Dick; Johnathan D. Tune; Jason M. Edwards; Zachary P. Neeb; U. Deniz Dincer; Michael Sturek

Recent studies implicate channels of the transient receptor potential vanilloid family (e.g., TRPV1) in regulating vascular tone; however, little is known about these channels in the coronary circulation. Furthermore, it is unclear whether metabolic syndrome alters the function and/or expression of TRPV1. We tested the hypothesis that TRPV1 mediates coronary vasodilation through endothelium-dependent mechanisms that are impaired by the metabolic syndrome. Studies were conducted on coronary arteries from lean and obese male Ossabaw miniature swine. In lean pigs, capsaicin, a TRPV1 agonist, relaxed arteries in a dose-dependent manner (EC50 = 116 +/- 41 nM). Capsaicin-induced relaxation was blocked by the TRPV1 antagonist capsazepine, endothelial denudation, inhibition of nitric oxide synthase, and K+ channel antagonists. Capsaicin-induced relaxation was impaired in rings from pigs with metabolic syndrome (91 +/- 4% vs. 51 +/- 10% relaxation at 100 microM). TRPV1 immunoreactivity was prominent in coronary endothelial cells. TRPV1 protein expression was decreased 40 +/- 11% in obese pigs. Capsaicin (100 microM) elicited divalent cation influx that was abolished in endothelial cells from obese pigs. These data indicate that TRPV1 channels are functionally expressed in the coronary circulation and mediate endothelium-dependent vasodilation through a mechanism involving nitric oxide and K+ channels. Impaired capsaicin-induced vasodilation in the metabolic syndrome is associated with decreased expression of TRPV1 and cation influx.


Circulation | 2013

Perivascular Adipose Tissue Potentiates Contraction of Coronary Vascular Smooth Muscle Influence of Obesity

Meredith K. Owen; Frank A. Witzmann; Mikaela L. McKenney; Xianyin Lai; Zachary C. Berwick; Steven P. Moberly; Mouhamad Alloosh; Michael Sturek; Johnathan D. Tune

Background— This investigation examined the mechanisms by which coronary perivascular adipose tissue (PVAT)–derived factors influence vasomotor tone and the PVAT proteome in lean versus obese swine. Methods and Results— Coronary arteries from Ossabaw swine were isolated for isometric tension studies. We found that coronary (P=0.03) and mesenteric (P=0.04) but not subcutaneous adipose tissue augmented coronary contractions to KCl (20 mmol/L). Inhibition of CaV1.2 channels with nifedipine (0.1 µmol/L) or diltiazem (10 µmol/L) abolished this effect. Coronary PVAT increased baseline tension and potentiated constriction of isolated arteries to prostaglandin F2&agr; in proportion to the amount of PVAT present (0.1–1.0 g). These effects were elevated in tissues obtained from obese swine and were observed in intact and endothelium denuded arteries. Coronary PVAT also diminished H2O2-mediated vasodilation in lean and, to a lesser extent, in obese arteries. These effects were associated with alterations in the obese coronary PVAT proteome (detected 186 alterations) and elevated voltage-dependent increases in intracellular [Ca2+] in obese smooth muscle cells. Further studies revealed that the Rho-kinase inhibitor fasudil (1 µmol/L) significantly blunted artery contractions to KCl and PVAT in lean but not obese swine. Calpastatin (10 &mgr;mol/L) also augmented contractions to levels similar to that observed in the presence of PVAT. Conclusions— Vascular effects of PVAT vary according to anatomic location and are influenced by an obese phenotype. Augmented contractile effects of obese coronary PVAT are related to alterations in the PVAT proteome (eg, calpastatin), Rho-dependent signaling, and the functional contribution of K+ and CaV1.2 channels to smooth muscle tone.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Impaired function of coronary BKCa channels in metabolic syndrome

Léna Borbouse; Gregory M. Dick; Shinichi Asano; Shawn B. Bender; U. Deniz Dincer; Gregory A. Payne; Zachary P. Neeb; Ian N. Bratz; Michael Sturek; Johnathan D. Tune

The role of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels in regulation of coronary microvascular function is widely appreciated, but molecular and functional changes underlying the deleterious influence of metabolic syndrome (MetS) have not been determined. Male Ossabaw miniature swine consumed for 3-6 mo a normal diet (11% kcal from fat) or an excess-calorie atherogenic diet that induces MetS (45% kcal from fat, 2% cholesterol, 20% kcal from fructose). MetS significantly impaired coronary vasodilation to the BK(Ca) opener NS-1619 in vivo (30-100 microg) and reduced the contribution of these channels to adenosine-induced microvascular vasodilation in vitro (1-100 microM). MetS reduced whole cell penitrem A (1 microM)-sensitive K(+) current and NS-1619-activated (10 microM) current in isolated coronary vascular smooth muscle cells. MetS increased the concentration of free intracellular Ca(2+) and augmented coronary vasoconstriction to the L-type Ca(2+) channel agonist BAY K 8644 (10 pM-10 nM). BK(Ca) channel alpha and beta(1) protein expression was increased in coronary arteries from MetS swine. Coronary vascular dysfunction in MetS is related to impaired BK(Ca) channel function and is accompanied by significant increases in L-type Ca(2+) channel-mediated coronary vasoconstriction.


Microcirculation | 2007

Mechanisms of Coronary Dysfunction in Obesity and Insulin Resistance

Jarrod D. Knudson; U. Deniz Dincer; Ian N. Bratz; Michael Sturek; Gregory M. Dick; Johnathan D. Tune

ABSTRACT


British Journal of Pharmacology | 2012

Epicardial perivascular adipose tissue as a therapeutic target in obesity‐related coronary artery disease

Gregory A. Payne; Meredith Kohr; Johnathan D. Tune

Adipose tissue is an active endocrine and paracrine organ that may influence the development of atherosclerosis and vascular disease. In the setting of obesity, adipose tissue produces a variety of inflammatory cytokines (or adipokines) that are known to modulate key mechanisms of atherogenesis. In particular, adipose tissue located on the surface of the heart surrounding large coronary arteries (i.e. epicardial perivascular adipose tissue) has been implicated in the pathogenesis of coronary artery disease. The present review outlines our current understanding of the cellular and molecular links between perivascular adipose tissue and atherosclerosis with a focus on potential mechanisms by which epicardial perivascular adipose tissue contributes to obesity‐related coronary disease. The pathophysiology of perivascular adipose tissue in obesity and its influence on oxidative stress, inflammation, endothelial dysfunction and vascular reactivity is addressed. In addition, the contribution of specific epicardial perivascular adipose‐derived adipokines (e.g. leptin, adiponectin) to the initiation and expansion of coronary disease is also highlighted. Finally, future investigative goals are discussed with an emphasis on indentifying novel therapeutic targets and disease markers within perivascular adipose tissue.


Experimental Biology and Medicine | 2005

Mechanisms of Oxygen Demand/Supply Balance in the Right Ventricle

Pu Zong; Johnathan D. Tune; H. Fred Downey

Few studies have investigated factors responsible for the O2 demand/supply balance in the right ventricle. Resting right coronary blood flow is lower than left coronary blood flow, which Is consistent with the lesser work of the right ventricle. Because right and left coronary artery perfusion pressures are Identical, right coronary conductance is less than left coronary conductance, but the signal relating this conductance to the lower right ventricular O2 demand has not been defined. At rest, the left ventricle extracts ~75% of the O2 delivered by coronary blood flow, whereas right ventricular O2 extraction Is only ~50%. As a result, resting right coronary venous PO2 is ~30 mm Hg, whereas left coronary venous PO2 is ~20 mm Hg. Right coronary conductance does not sufficiently restrict flow to force the right ventricle to extract the same percentage of O2 as the left ventricle. Endogenous nitric oxide impacts the right ventricular O2 demand/supply balance by increasing the right coronary blood flow at rest and during acute pulmonary hypertension, systemic hypoxia, norepinephrine infusion, and coronary hypoperfusion. The substantial right ventricular O2 extraction reserve is used preferentially during exercise-induced increases in right ventricular myocardial O2 consumption. An augmented, sympathetic-mediated vasoconstrictor tone blunts metabolically mediated dilator mechanisms during exercise and forces the right ventricle to mobilize its O2 extraction reserve, but this tone does not limit resting right coronary flow. During exercise, right coronary vasodilation does not occur until right coronary venous PO2 decreases to ~20 mm Hg. The mechanism responsible for right coronary vasodilation at low PO2 has not been delineated. In the poorly autoregulating right coronary circulation, reduced coronary pressure unloads the coronary hydraulic skeleton and reduces right ventricular systolic stiffness. Thus, normal right ventricular external work and O2 demand/supply balance can be maintained during moderate coronary hypoperfusion.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Periadventitial adipose tissue impairs coronary endothelial function via PKC-β-dependent phosphorylation of nitric oxide synthase

Gregory A. Payne; H. Glenn Bohlen; U. Deniz Dincer; Léna Borbouse; Johnathan D. Tune

Endogenous periadventitial adipose-derived factors have been shown to contribute to coronary vascular regulation by impairing endothelial function through a direct inhibition of endothelial nitric oxide synthase (eNOS). However, our understanding of the underlying mechanisms remains uncertain. Accordingly, this study was designed to test the hypothesis that periadventitial adipose tissue releases agents that attenuate coronary endothelial nitric oxide production via a protein kinase C (PKC)-beta-dependent mechanism. Isometric tension studies were conducted on isolated canine circumflex coronary arteries with and without natural amounts of periadventitial adipose tissue. Adipose tissue significantly diminished coronary endothelial-dependent vasodilation and nitric oxide production in response to bradykinin and acetylcholine. The selective inhibition of endothelial PKC-beta with ruboxistaurin (1 microM) abolished the adipose-induced impairment of bradykinin-mediated coronary vasodilation and the endothelial production of nitric oxide. Western blot analysis revealed a significant increase in eNOS phosphorylation at the inhibitory residue Thr(495) in arteries exposed to periadventitial adipose tissue. This site-specific phosphorylation of eNOS was prevented by the inhibition of PKC-beta. These data demonstrate that periadventitial adipose-derived factors impair coronary endothelial nitric oxide production via a PKC-beta-dependent, site-specific phosphorylation of eNOS at Thr(495).

Collaboration


Dive into the Johnathan D. Tune's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian N. Bratz

Northeast Ohio Medical University

View shared research outputs
Top Co-Authors

Avatar

H. Fred Downey

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge