Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Guggenmos is active.

Publication


Featured researches published by Alexander Guggenmos.


Nature | 2016

Multi-petahertz electronic metrology

Manish Garg; Minjie Zhan; Tran Trung Luu; Harshit Lakhotia; Till Klostermann; Alexander Guggenmos; Eleftherios Goulielmakis

The frequency of electric currents associated with charge carriers moving in the electronic bands of solids determines the speed limit of electronics and thereby that of information and signal processing. The use of light fields to drive electrons promises access to vastly higher frequencies than conventionally used, as electric currents can be induced and manipulated on timescales faster than that of the quantum dephasing of charge carriers in solids. This forms the basis of terahertz (1012 hertz) electronics in artificial superlattices, and has enabled light-based switches and sampling of currents extending in frequency up to a few hundred terahertz. Here we demonstrate the extension of electronic metrology to the multi-petahertz (1015 hertz) frequency range. We use single-cycle intense optical fields (about one volt per ångström) to drive electron motion in the bulk of silicon dioxide, and then probe its dynamics by using attosecond (10−18 seconds) streaking to map the time structure of emerging isolated attosecond extreme ultraviolet transients and their optical driver. The data establish a firm link between the emission of the extreme ultraviolet radiation and the light-induced intraband, phase-coherent electric currents that extend in frequency up to about eight petahertz, and enable access to the dynamic nonlinear conductivity of silicon dioxide. Direct probing, confinement and control of the waveform of intraband currents inside solids on attosecond timescales establish a method of realizing multi-petahertz coherent electronics. We expect this technique to enable new ways of exploring the interplay between electron dynamics and the structure of condensed matter on the atomic scale.


Optics Express | 2011

Attosecond dispersion control by extreme ultraviolet multilayer mirrors

Michael Hofstetter; Martin Schultze; Markus Fieß; Benjamin Dennhardt; Alexander Guggenmos; Justin Gagnon; Vladislav S. Yakovlev; Eleftherios Goulielmakis; Reinhard Kienberger; Eric M. Gullikson; Ferenc Krausz; Ulf Kleineberg

We report the first experimental demonstration of a-periodic multilayer mirrors controlling the frequency sweep (chirp) of isolated attosecond XUV pulses. The concept was proven with about 200-attosecond pulses in the photon energy range of 100-130 eV measured via photoelectron streaking in neon. The demonstrated attosecond dispersion control is engineerable in a wide range of XUV photon energies and bandwidths. The resultant tailor-made attosecond pulses with highly enhanced photon flux are expected to significantly advance attosecond metrology and spectroscopy and broaden their range of applications.


Scientific Reports | 2015

Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet

Michael Zürch; Jan Rothhardt; Steffen Hädrich; Stefan Demmler; Manuel Krebs; Jens Limpert; Andreas Tünnermann; Alexander Guggenmos; Ulf Kleineberg; Ch. Spielmann

Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA = 0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Δr = 0.8λ) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences.


Applied Physics Letters | 2012

Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses

Soo Hoon Chew; Frederik Süßmann; C. Späth; Adrian Wirth; J. Schmidt; Sergey Zherebtsov; Alexander Guggenmos; A. Oelsner; Nils Weber; J. Kapaldo; Alexander Gliserin; Mark I. Stockman; Matthias F. Kling; Ulf Kleineberg

We report on the imaging of plasmonic structures by time-of-flight-photoemission electron microscopy (ToF-PEEM) in combination with extreme ultraviolet (XUV) attosecond pulses from a high harmonic generation source. Characterization of lithographically fabricated Au structures using these ultrashort XUV pulses by ToF-PEEM shows a spatial resolution of ∼200 nm. Energy-filtered imaging of the secondary electrons resulting in reduced chromatic aberrations as well as microspectroscopic identification of core and valence band electronic states have been successfully proven. We also find that the fast valence band electrons are not influenced by space charge effects, which is essentially important for attosecond nanoplasmonic-field microscopy realization.


Nature Communications | 2016

Attosecond nanoscale near-field sampling

Benjamin Förg; Johannes Schötz; Frederik Süßmann; Michael Forster; Michael Krüger; Byung-Tae Ahn; William Okell; Karen Wintersperger; Sergey Zherebtsov; Alexander Guggenmos; V. Pervak; Alexander Kessel; Sergei A. Trushin; Abdallah M. Azzeer; Mark I. Stockman; Dong Eon Kim; Ferenc Krausz; Peter Hommelhoff; Matthias F. Kling

The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.


New Journal of Physics | 2011

Lanthanum–molybdenum multilayer mirrors for attosecond pulses between 80 and 130 eV

Michael Hofstetter; Andy Aquila; Martin Schultze; Alexander Guggenmos; See-Hun Yang; Eric M. Gullikson; Martin Huth; Bert Nickel; Justin Gagnon; Vladislav S. Yakovlev; Eleftherios Goulielmakis; Ferenc Krausz; Ulf Kleineberg

A novel multilayer material system consisting of lanthanum and molybdenum nano-layers for both broadband and highly reflecting multilayer mirrors in the energy range between 80 and 130 eV is presented. The simulation and design of these multilayers were based on an improved set of optical constants, which were recorded by extreme ultraviolet (XUV)/soft-x-ray absorption measurements on freestanding lanthanum nano-films between 30 eV and 1.3 keV. Lanthanum–molybdenum (La/Mo) multilayer mirrors were produced by ion-beam sputtering and characterized through both x-ray and XUV reflectivity measurements. We demonstrate the ability to precisely simulate and realize aperiodic stacks. Their stability against ambient air conditions is demonstrated. Finally, the La/Mo mirrors were used in the generation of single attosecond pulses from high-harmonic cut-off spectra above 100 eV. Isolated 200 attosecond-long pulses were measured by XUV-pump/IR-probe streaking experiments and characterized using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG/CRAB) analyses.


Optics Letters | 2015

Chromium/scandium multilayer mirrors for isolated attosecond pulses at 145 eV

Alexander Guggenmos; Michael Jobst; Marcus Ossiander; Stefan Radünz; Johann Riemensberger; Martin Schäffer; Ayman Akil; Clemens Jakubeit; Philip Boehm; Simon Noever; Bert Nickel; Reinhard Kienberger; Ulf Kleineberg

Recent advances in the development of attosecond soft x-ray sources toward photon wavelengths below 10 nm are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. We demonstrate that current attosecond experiments in the sub-200-eV range benefit from these improved optics. We present our achievements in utilizing ion-beam-deposited chromium/scandium (Cr/Sc) multilayer mirrors, optimized by tailored material dependent deposition and interface polishing, for the generation of single attosecond pulses from a high-harmonic cut-off spectrum at a central energy of 145 eV. Isolated attosecond pulses have been measured by soft x-ray-pump/NIR-probe electron streaking experiments and characterized using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG/CRAB). The results demonstrate that Cr/Sc multilayer mirrors can be used as efficient attosecond optics for reflecting 600-attosecond pulses at a photon energy of 145 eV, which is a prerequisite for present and future attosecond experiments in this energy range.


Optics Express | 2014

Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

Alexander Guggenmos; Stefan Radünz; Roman Rauhut; Michael Hofstetter; Sriram Venkatesan; Angela S. Wochnik; Eric M. Gullikson; Stefan Fischer; Bert Nickel; Christina Scheu; Ulf Kleineberg

Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV-543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assisted interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.


Science | 2017

Soft x-ray excitonics

Antoine Moulet; Julien B. Bertrand; Till Klostermann; Alexander Guggenmos; Nicholas Karpowicz; Eleftherios Goulielmakis

Consecutive attosecond pulses reveal the dynamics of excitons ensuing from core-electron excitation in silica. A quick glimpse of the x-ray aftermath X-rays pass through your skin to reveal the inner workings below. At the atomic scale, x-rays skip past valence electrons to grab hold of the core electrons closer to the nucleus. Moulet et al. used two successive, extremely short laser pulses (lasting less than a quadrillionth of a second) to initiate and then track this process in a sample of silica. This study uncovered the angular momentum character and relaxation dynamics of the excitons, or electron-hole pairs, ensuing from the x-ray absorption. Science, this issue p. 1134 The dynamic response of excitons in solids is central to modern condensed-phase physics, material sciences, and photonic technologies. However, study and control have hitherto been limited to photon energies lower than the fundamental band gap. Here we report application of attosecond soft x-ray and attosecond optical pulses to study the dynamics of core-excitons at the L2,3 edge of Si in silicon dioxide (SiO2). This attosecond x-ray absorption near-edge spectroscopy (AXANES) technique enables direct probing of the excitons’ quasiparticle character, tracking of their subfemtosecond relaxation, the measurement of excitonic polarizability, and observation of dark core-excitonic states. Direct measurement and control of core-excitons in solids lay the foundation of x-ray excitonics.


Optics Express | 2015

Generation of circularly polarized high harmonic radiation using a transmission multilayer quarter waveplate

Jürgen Schmidt; Alexander Guggenmos; Michael Hofstetter; Soo Hoon Chew; Ulf Kleineberg

High harmonic radiation is meanwhile nearly extensively used for the spectroscopic investigation of electron dynamics with ultimate time resolution. The majority of high harmonic beamlines provide linearly polarized radiation created in a gas target. However, circular polarization greatly extends the spectroscopic possibilities for high harmonics, especially in the analysis of samples with chirality or prominent spin polarization. We produced a free-standing multilayer foil as a transmission EUV quarter waveplate and applied it for the first time to high harmonic radiation. We measured a broadband (4.6 eV FWHM) ellipticity of 75% at 66 eV photon energy with a transmission efficiency of 5%. The helicity is switchable and the ellipticity can be adjusted to lower values by angle tuning. As a single element it can be easily integrated in any existing harmonic beamline without major changes.

Collaboration


Dive into the Alexander Guggenmos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric M. Gullikson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge