Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Schultze is active.

Publication


Featured researches published by Martin Schultze.


Science | 2008

Single-cycle nonlinear optics

Eleftherios Goulielmakis; Martin Schultze; Michael Hofstetter; Vladislav S. Yakovlev; Justin Gagnon; Matthias Uiberacker; Andy Aquila; Eric M. Gullikson; David T. Attwood; Reinhard Kienberger; Ferenc Krausz; Ulf Kleineberg

Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy ∼ 80 electron volts), containing ∼0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of ∼10–6. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time (∼24 attoseconds).


Nature | 2007

Attosecond real-time observation of electron tunnelling in atoms

Matthias Uiberacker; Thorsten Uphues; Martin Schultze; Aart J. Verhoef; Vladislav S. Yakovlev; Matthias F. Kling; Jens Rauschenberger; N M Kabachnik; H. Schröder; Matthias Lezius; K. L. Kompa; H. Müller; M. J. J. Vrakking; Stefan Hendel; Ulf Kleineberg; Ulrich Heinzmann; Markus Drescher; Ferenc Krausz

Atoms exposed to intense light lose one or more electrons and become ions. In strong fields, the process is predicted to occur via tunnelling through the binding potential that is suppressed by the light field near the peaks of its oscillations. Here we report the real-time observation of this most elementary step in strong-field interactions: light-induced electron tunnelling. The process is found to deplete atomic bound states in sharp steps lasting several hundred attoseconds. This suggests a new technique, attosecond tunnelling, for probing short-lived, transient states of atoms or molecules with high temporal resolution. The utility of attosecond tunnelling is demonstrated by capturing multi-electron excitation (shake-up) and relaxation (cascaded Auger decay) processes with subfemtosecond resolution.


Science | 2010

Delay in Photoemission

Martin Schultze; Markus Fieß; Nicholas Karpowicz; Justin Gagnon; Michael Korbman; Michael Hofstetter; Stefan Neppl; Adrian L. Cavalieri; Yannis Komninos; Theodoros Mercouris; Cleanthes A. Nicolaides; Renate Pazourek; Stefan Nagele; Johannes Feist; Joachim Burgdörfer; Abdallah M. Azzeer; Ralph Ernstorfer; Reinhard Kienberger; Ulf Kleineberg; Eleftherios Goulielmakis; Ferenc Krausz; Vladislav S. Yakovlev

Defining Time-Zero When a high-energy photon hits an atom and is absorbed, the result can be the excitation and emission of an electron. This photoemission, or photoelectric effect, is generally assumed to occur instantaneously, and represents the definition of “time-zero” in clocking such ultrafast events. Schultze et al. (p. 1658, see the cover; see the Perspective by van der Hart) use ultrafast spectroscopy, with light pulses on the time scale of several tens of attoseconds, to test this assumption directly. They excite neon atoms with 100 eV photons and find that there is a small (20-attosecond) time delay between the emission of electrons from the 2s and 2p orbitals of the atoms. These results should have implications in modeling electron dynamics occurring on ultrafast time scales. Ultrafast metrology reveals a 20-attosecond delay between photoemission from different electronic orbitals in neon atoms. Photoemission from atoms is assumed to occur instantly in response to incident radiation and provides the basis for setting the zero of time in clocking atomic-scale electron motion. We used attosecond metrology to reveal a delay of 21±5 attoseconds in the emission of electrons liberated from the 2p orbitals of neon atoms with respect to those released from the 2s orbital by the same 100–electron volt light pulse. Small differences in the timing of photoemission from different quantum states provide a probe for modeling many-electron dynamics. Theoretical models refined with the help of attosecond timing metrology may provide insight into electron correlations and allow the setting of the zero of time in atomic-scale chronoscopy with a precision of a few attoseconds.


Nature | 2012

Optical-field-induced current in dielectrics

Agustin Schiffrin; Tim Paasch-Colberg; Nicholas Karpowicz; Vadym Apalkov; Daniel Gerster; Sascha Mühlbrandt; Michael Korbman; Joachim Reichert; Martin Schultze; Simon Holzner; Johannes V. Barth; Reinhard Kienberger; Ralph Ernstorfer; Vladislav S. Yakovlev; Mark I. Stockman; Ferenc Krausz

The time it takes to switch on and off electric current determines the rate at which signals can be processed and sampled in modern information technology. Field-effect transistors are able to control currents at frequencies of the order of or higher than 100 gigahertz, but electric interconnects may hamper progress towards reaching the terahertz (1012 hertz) range. All-optical injection of currents through interfering photoexcitation pathways or photoconductive switching of terahertz transients has made it possible to control electric current on a subpicosecond timescale in semiconductors. Insulators have been deemed unsuitable for both methods, because of the need for either ultraviolet light or strong fields, which induce slow damage or ultrafast breakdown, respectively. Here we report the feasibility of electric signal manipulation in a dielectric. A few-cycle optical waveform reversibly increases—free from breakdown—the a.c. conductivity of amorphous silicon dioxide (fused silica) by more than 18 orders of magnitude within 1 femtosecond, allowing electric currents to be driven, directed and switched by the instantaneous light field. Our work opens the way to extending electronic signal processing and high-speed metrology into the petahertz (1015 hertz) domain.


Nature | 2012

Controlling dielectrics with the electric field of light

Martin Schultze; Elisabeth Bothschafter; Annkatrin Sommer; Simon Holzner; Wolfgang Schweinberger; Markus Fiess; Michael Hofstetter; Reinhard Kienberger; Vadym Apalkov; Vladislav S. Yakovlev; Mark I. Stockman; Ferenc Krausz

The control of the electric and optical properties of semiconductors with microwave fields forms the basis of modern electronics, information processing and optical communications. The extension of such control to optical frequencies calls for wideband materials such as dielectrics, which require strong electric fields to alter their physical properties. Few-cycle laser pulses permit damage-free exposure of dielectrics to electric fields of several volts per ångström and significant modifications in their electronic system. Fields of such strength and temporal confinement can turn a dielectric from an insulating state to a conducting state within the optical period. However, to extend electric signal control and processing to light frequencies depends on the feasibility of reversing these effects approximately as fast as they can be induced. Here we study the underlying electron processes with sub-femtosecond solid-state spectroscopy, which reveals the feasibility of manipulating the electronic structure and electric polarizability of a dielectric reversibly with the electric field of light. We irradiate a dielectric (fused silica) with a waveform-controlled near-infrared few-cycle light field of several volts per angström and probe changes in extreme-ultraviolet absorptivity and near-infrared reflectivity on a timescale of approximately a hundred attoseconds to a few femtoseconds. The field-induced changes follow, in a highly nonlinear fashion, the turn-on and turn-off behaviour of the driving field, in agreement with the predictions of a quantum mechanical model. The ultrafast reversibility of the effects implies that the physical properties of a dielectric can be controlled with the electric field of light, offering the potential for petahertz-bandwidth signal manipulation.


New Journal of Physics | 2007

Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua

Adrian L. Cavalieri; Eleftherios Goulielmakis; Balint Horvath; Wolfram Helml; Martin Schultze; Markus Fieß; Volodymyr Pervak; Laszlo Veisz; Vladislav S. Yakovlev; Matthias Uiberacker; Alexander Apolonskiy; Ferenc Krausz; Reinhard Kienberger

We demonstrate sub-millijoule-energy, sub-4?fs-duration near-infrared laser pulses with a controlled waveform comprised of approximately 1.5 optical cycles within the full-width at half-maximum (FWHM) of their temporal intensity profile. We further demonstrate the utility of these pulses for producing high-order harmonic continua of unprecedented bandwidth at photon energies around 100?eV. Ultra-broadband coherent continua extending from 90?eV to more than 130?eV with smooth spectral intensity distributions that exhibit dramatic, never-before-observed sensitivity to the carrier-envelope offset (CEO) phase of the driver laser pulse were generated. These results suggest the feasibility of sub-100-attosecond XUV pulse generation for attosecond spectroscopy in the 100?eV range, and of a simple yet highly sensitive on-line CEO phase detector with sub-50-ms response time.


New Journal of Physics | 2007

Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics

Martin Schultze; Eleftherios Goulielmakis; Matthias Uiberacker; Michael Hofstetter; J. Kim; Dong Eon Kim; Ferenc Krausz; Ulf Kleineberg

Single 170-as extreme ultraviolet (XUV) pulses delivering more than 10 6 photons/pulse at ∼100 eV at a repetition rate of 3 kHz are produced by ionizing neon with waveform-controlled sub-5 fs near-infrared (NIR) laser pulses and spectrally filtering the emerging near-cutoff high-harmonic continuum with a broadband, chirped multilayer molybdenum-silicon (Mo/Si) mirror.


Optics Express | 2008

Intense few-cycle light pulses in the deep ultraviolet.

Ulrich Graf; Markus Fieß; Martin Schultze; Reinhard Kienberger; Ferenc Krausz; Eleftherios Goulielmakis

We demonstrate that nonlinear frequency upconversion of few-cycle near-infrared (NIR) laser pulses, by means of harmonic generation in noble gases, is a promising approach for extending cutting-edge, few-cycle ultrafast technology into the deep ultraviolet and beyond, without the need for UV dispersion control. In our experiment, we generate 3.7-fs pulses in the deep UV (approximately 4.6 eV) with adjustable polarization and gigawatt-scale peak power. We demonstrate that the implementation of this concept with a quasi-monocycle driver offers the potential for advancing UV pulse generation towards the 1-fs frontier.


Optics Letters | 2008

Ultrabroadband, coherent light source based on self-channeling of few-cycle pulses in helium

Eleftherios Goulielmakis; S. Koehler; B. Reiter; Martin Schultze; Aart J. Verhoef; E. E. Serebryannikov; Aleksei M. Zheltikov; Ferenc Krausz

Self-channeling of few-cycle laser pulses in helium at high pressure generates coherent light supercontinua spanning the range of 270-1000 nm, with the highest efficiency demonstrated to date. Our results open the door to the synthesis of powerful light waveforms shaped within the carrier field oscillation cycle and hold promise for the generation of pulses at the single-cycle limit.


Nature | 2016

Attosecond nonlinear polarization and light-matter energy transfer in solids

Annkatrin Sommer; Elisabeth Bothschafter; Shunsuke A. Sato; Clemens Jakubeit; Tobias Latka; Olga Razskazovskaya; Hanieh Fattahi; Michael Jobst; Wolfgang Schweinberger; Vahe Shirvanyan; Vladislav S. Yakovlev; Reinhard Kienberger; Kazuhiro Yabana; Nicholas Karpowicz; Martin Schultze; Ferenc Krausz

Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.

Collaboration


Dive into the Martin Schultze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge