Alexander Jonathan Van Der Horst
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Alexander Jonathan Van Der Horst is active.
Publication
Featured researches published by Alexander Jonathan Van Der Horst.
The Astrophysical Journal | 2009
Charles A. Meegan; Giselher G. Lichti; P. N. Bhat; E. Bissaldi; M. S. Briggs; V. Connaughton; R. Diehl; G. J. Fishman; J. Greiner; Andrew S. Hoover; Alexander Jonathan Van Der Horst; Andreas von Kienlin; R. Marc Kippen; C. Kouveliotou; Sheila McBreen; W. S. Paciesas; Robert B. Preece; H. Steinle; M. Wallace; Robert B. Wilson; C. Wilson-Hodge
The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from ~8 keV to ~40 MeV over the full unocculted sky. The onboard trigger threshold is ~0.7 photons cm–2 s–1 (50-300 keV, 1 s peak). GBM generates onboard triggers for ~250 GRBs per year.
Science | 2011
Joshua S. Bloom; Dimitrios Giannios; Brian D. Metzger; S. Bradley Cenko; Daniel A. Perley; Nathaniel R. Butler; Nial R. Tanvir; Andrew J. Levan; P. T. O’Brien; Linda E. Strubbe; Fabio De Colle; Enrico Ramirez-Ruiz; William H. Lee; Sergei Nayakshin; Eliot Quataert; A. R. King; Antonino Cucchiara; James Guillochon; Geoffrey C. Bower; Andrew S. Fruchter; Adam N. Morgan; Alexander Jonathan Van Der Horst
A recent bright emission observed by the Swift satellite is due to the sudden accretion of a star onto a massive black hole. Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a bright tidal disruption flare (TDF). Although the high-energy transient Sw 1644+57 initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that observations suggest a sudden accretion event onto a central MBH of mass about 106 to 107 solar masses. There is evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 to a temporary smaller-scale blazar.
The Astrophysical Journal | 2011
S. Guiriec; V. Connaughton; M. S. Briggs; Michael Burgess; F. Ryde; F. Daigne; P. Meszaros; Adam Goldstein; J. E. McEnery; N. Omodei; P. N. Bhat; E. Bissaldi; Ascension Camero-Arranz; Vandiver Chaplin; R. Diehl; G. J. Fishman; S. Foley; M. H. Gibby; J. Greiner; David Gruber; Andreas von Kienlin; Marc Kippen; C. Kouveliotou; Sheila McBreen; Charles A. Meegan; W. S. Paciesas; Robert D. Preece; Dave Tierney; Alexander Jonathan Van Der Horst; C. Wilson-Hodge
Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a statistically highly significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux.
Astrophysical Journal Supplement Series | 2014
David Gruber; Adam Goldstein; Victoria Weller von Ahlefeld; P. Narayana Bhat; E. Bissaldi; M. S. Briggs; Dave Byrne; W. Cleveland; V. Connaughton; R. Diehl; G. J. Fishman; G. Fitzpatrick; S. Foley; M. H. Gibby; J. Greiner; S. Guiriec; Alexander Jonathan Van Der Horst; Andreas von Kienlin; C. Kouveliotou; Emily Layden; Lin Lin; Charles A. Meegan; S. McGlynn; W. S. Paciesas; V. Pelassa; Robert D. Preece; C. Wilson-Hodge; S. Xiong; George Younes; Hoi-Fung Yu
In this catalog we present the updated set of spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor during its first four years of operation. It contains two types of spectra, time-integrated spectral fits and spectral fits at the brightest time bin, from 943 triggered GRBs. Four different spectral models were fitted to the data, resulting in a compendium of more than 7500 spectra. The analysis was performed similarly but not identically to Goldstein et al. All 487 GRBs from the first two years have been re-fitted using the same methodology as that of the 456 GRBs in years three and four. We describe, in detail, our procedure and criteria for the analysis and present the results in the form of parameter distributions both for the observer-frame and rest-frame quantities. The data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
Astrophysical Journal Supplement Series | 2012
Adam Goldstein; J. Michael Burgess; Robert D. Preece; M. S. Briggs; S. Guiriec; Alexander Jonathan Van Der Horst; V. Connaughton; C. Wilson-Hodge; W. S. Paciesas; Charles A. Meegan; Andreas von Kienlin; P. N. Bhat; E. Bissaldi; Vandiver Chaplin; R. Diehl; G. J. Fishman; G. Fitzpatrick; S. Foley; M. H. Gibby; J. Greiner; David Gruber; R. Marc Kippen; C. Kouveliotou; Sheila McBreen; S. McGlynn; Dave Tierney
We present systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
The Astrophysical Journal | 2012
Assaf Horesh; S. R. Kulkarni; Derek B. Fox; John M. Carpenter; Mansi M. Kasliwal; Eran O. Ofek; Robert Michael Quimby; Avishay Gal-Yam; Bradley Cenko; de Antonius Bruyn; Atish Kamble; R. A. M. J. Wijers; Alexander Jonathan Van Der Horst; C. Kouveliotou; Philipp Podsiadlowski; Mark Sullivan; K. Maguire; D. Andrew Howell; Peter E. Nugent; Neil Gehrels; Nicholas M. Law; Dovi Poznanski; Michael M. Shara
On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time.We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of Ṁ ≾ 10^(−8)(w/100 km s^(−1))M_☉ yr^(−1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.
Astrophysical Journal Supplement Series | 2014
Andreas von Kienlin; Charles A. Meegan; W. S. Paciesas; P. N. Bhat; E. Bissaldi; M. S. Briggs; J. Michael Burgess; D. Byrne; Vandiver Chaplin; W. Cleveland; V. Connaughton; Andrew C. Collazzi; G. Fitzpatrick; S. Foley; M. H. Gibby; Adam Goldstein; J. Greiner; David Gruber; S. Guiriec; Alexander Jonathan Van Der Horst; C. Kouveliotou; Emily Layden; Sheila McBreen; S. McGlynn; V. Pelassa; Robert D. Preece; Dave Tierney; C. Wilson-Hodge; S. Xiong; George Younes
This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
Astrophysical Journal Supplement Series | 2012
W. S. Paciesas; Charles A. Meegan; Andreas von Kienlin; P. N. Bhat; E. Bissaldi; M. S. Briggs; J. Michael Burgess; Vandiver Chaplin; V. Connaughton; R. Diehl; G. J. Fishman; G. Fitzpatrick; S. Foley; M. H. Gibby; Adam Goldstein; J. Greiner; David Gruber; S. Guiriec; Alexander Jonathan Van Der Horst; R. Marc Kippen; C. Kouveliotou; Giselher G. Lichti; Lin Lin; Sheila McBreen; Robert D. Preece; Dave Tierney; C. Wilson-Hodge
The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered GRBs, including their locations, durations, peak flux, and fluence. This catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
The Astrophysical Journal | 2007
Y. Kaneko; Enrico Ramirez-Ruiz; Jonathan Granot; C. Kouveliotou; S. E. Woosley; Sandeep K. Patel; E. Rol; Jean in t Zand; Alexander Jonathan Van Der Horst; R. A. M. J. Wijers; Richard G. Strom
We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with Type Ic supernovae and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution and estimate the total energy budget based on broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and subrelativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.
The Astrophysical Journal | 2010
S. Guiriec; M. S. Briggs; Valerie Connaugthon; E. Kara; F. Daigne; C. Kouveliotou; Alexander Jonathan Van Der Horst; W. S. Paciesas; Charles A. Meegan; P. N. Bhat; S. Foley; E. Bissaldi; Michael Burgess; Vandiver Chaplin; R. Diehl; G. J. Fishman; M. H. Gibby; Adam Goldstein; J. Greiner; David Gruber; Andreas von Kienlin; Marc Kippen; Sheila McBreen; Robert D. Preece; Dave Tierney; C. Wilson-Hodge
From 2008 July to 2009 October, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope has detected 320 gamma-ray bursts (GRBs). About 20% of these events are classified as short based on their T90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power law with index ∼-1.5. The time-integrated Epeak values exceed 2 MeV for two of the bursts and are well above the values observed in the brightest long GRBs. Their Epeak values and their low-energy power-law indices (a) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched toward higher energies. In our time-resolved spectroscopy analysis, we find that the Epeak values range from a few tens of keV up to more than 6MeV. In general, the hardness evolutions during the bursts follow their flux/intensity variations, similar to long bursts. However, we do not always see the Epeak leading the light-curve rises and confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.