Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander M. Tatara is active.

Publication


Featured researches published by Alexander M. Tatara.


Journal of Controlled Release | 2014

Gelatin carriers for drug and cell delivery in tissue engineering

Marco Santoro; Alexander M. Tatara; Antonios G. Mikos

The ability of gelatin to form complexes with different drugs has been investigated for controlled release applications. Gelatin parameters, such as crosslinking density and isoelectric point, have been tuned in order to optimize gelatin degradation and drug delivery kinetics. In recent years, focus has shifted away from the use of gelatin in isolation toward the modification of gelatin with functional groups and the fabrication of material composites with embedded gelatin carriers. In this review, we highlight some of the latest work being performed in these areas and comment on trends in the field. Specifically, we discuss gelatin modifications for immune system evasion, drug stabilization, and targeted delivery, as well as gelatin composite systems based on ceramics, naturally-occurring polymers, and synthetic polymers.


Biomaterials | 2016

Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering

Tiffany N. Vo; Sarita R. Shah; Steven Lu; Alexander M. Tatara; Esther J. Lee; T.T. Roh; Yasuhiko Tabata; Antonios G. Mikos

The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo. Composite hydrogels comprising copolymer macromers of N-isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro. GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering.


Journal of Dental Research | 2014

In Vivo Bioreactors for Mandibular Reconstruction

Alexander M. Tatara; Mark E. Wong; Antonios G. Mikos

Large mandibular defects are difficult to reconstruct with good functional and aesthetic outcomes because of the complex geometry of craniofacial bone. While the current gold standard is free tissue flap transfer, this treatment is limited in fidelity by the shape of the harvested tissue and can result in significant donor site morbidity. To address these problems, in vivo bioreactors have been explored as an approach to generate autologous prefabricated tissue flaps. These bioreactors are implanted in an ectopic site in the body, where ossified tissue grows into the bioreactor in predefined geometries and local vessels are recruited to vascularize the developing construct. The prefabricated flap can then be harvested with vessels and transferred to a mandibular defect for optimal reconstruction. The objective of this review article is to introduce the concept of the in vivo bioreactor, describe important preclinical models in the field, summarize the human cases that have been reported through this strategy, and offer future directions for this exciting approach.


Clinical Infectious Diseases | 2017

Changes in In Vitro Susceptibility Patterns of Aspergillus to Triazoles and Correlation With Aspergillosis Outcome in a Tertiary Care Cancer Center, 1999-2015

Sang Taek Heo; Alexander M. Tatara; Cristina Jiménez-Ortigosa; Ying Jiang; Russell E. Lewis; Jeffrey J. Tarrand; Frank P. Tverdek; Nathaniel D. Albert; Paul E. Verweij; Jacques F. Meis; Antonios G. Mikos; David S. Perlin; Dimitrios P. Kontoyiannis

Background Azole-resistant aspergillosis in high-risk patients with hematological malignancy or hematopoietic stem cell transplantation (HSCT) is a cause of concern. Methods We examined changes over time in triazole minimum inhibitory concentrations (MICs) of 290 sequential Aspergillus isolates recovered from respiratory sources during 1999-2002 (before introduction of the Aspergillus-potent triazoles voriconazole and posaconazole) and 2003-2015 at MD Anderson Cancer Center. We also tested for polymorphisms in ergosterol biosynthetic genes (cyp51A, erg3C, erg1) in the 37 Aspergillus fumigatus isolates isolated from both periods that had non-wild-type (WT) MICs. For the 107 patients with hematologic cancer and/or HSCT with invasive pulmonary aspergillosis, we correlated in vitro susceptibility with 42-day mortality. Results Non-WT MICs were found in 37 (13%) isolates and was only low level (MIC <8 mg/L) in all isolates. Higher-triazole MICs were more frequent in the second period and were Aspergillus-species specific, and only encountered in A. fumigatus. No polymorphisms in cyp51A, erg3C, erg1 genes were identified. There was no correlation between in vitro MICs with 42-day mortality in patients with invasive pulmonary aspergillosis, irrespective of antifungal treatment. Asian race (odds ratio [OR], 20.9; 95% confidence interval [CI], 2.5-173.5; P = .005) and azole exposure in the prior 3 months (OR, 9.6; 95% CI, 1.9-48.5; P = .006) were associated with azole resistance. Conclusions Non-WT azole MICs in Aspergillus are increasing and this is associated with prior azole exposure in patients with hematologic cancer or HSCT. However, no correlation of MIC with outcome of aspergillosis was found in our patient cohort.


Journal of Bone and Joint Surgery, American Volume | 2016

Tissue Engineering in Orthopaedics

Alexander M. Tatara; Antonios G. Mikos

➤It is important to carefully select the most appropriate combination of scaffold, signals, and cell types when designing tissue engineering approaches for an orthopaedic pathology.➤Although clinical studies in which the tissue engineering paradigm has been applied in the treatment of orthopaedic diseases are limited in number, examining them can yield important lessons.➤While there is a rapid rate of new discoveries in the basic sciences, substantial regulatory, economic, and clinical issues must be overcome with more consistency to translate a greater number of technologies from the laboratory to the operating room.


Medicine | 2016

Factors affecting patient outcome in primary cutaneous aspergillosis

Alexander M. Tatara; Antonios G. Mikos; Dimitrios P. Kontoyiannis

AbstractPrimary cutaneous aspergillosis (PCA) is an uncommon infection of the skin. There is a paucity of organized literature regarding this entity in regard to patient characteristics, associated Aspergillus species, and treatment modalities on outcome (disease recurrence, disease dissemination, and mortality).We reviewed all published reports of PCA from 1967 to 2015. Cases were deemed eligible if they included the following: patient baseline characteristics (age, sex, underlying condition), evidence of proven or probable PCA, primary treatment strategy, and outcome.We identified 130 eligible cases reported from 1967 to 2015. The patients were predominantly male (63.8%) with a mean age of 30.4 ± 22.1 years. Rates of PCA recurrence, dissemination, and mortality were 10.8%, 18.5%, and 31.5%, respectively. In half of the cases, there was an association with a foreign body. Seven different Aspergillus species were reported to cause PCA. Systemic antifungal therapy without surgery was the most common form of therapy (60% of cases). Disease dissemination was more common in patients with underlying systemic conditions and occurred on average 41.4 days after PCA diagnosis (range of 3–120 days). In a multivariate linear regression model of mortality including only patients with immunosuppressive conditions, dissemination and human immunodeficiency virus/acquired immune deficiency syndrome were statistically significantly associated with increased mortality.Nearly one-third of patients with PCA die with the disease. Dissemination and host status are critical in patient outcome.


Methods | 2015

Infected Animal Models for Tissue Engineering

Alexander M. Tatara; Sarita R. Shah; Carissa E. Livingston; Antonios G. Mikos

Infection is one of the most common complications associated with medical interventions and implants. As tissue engineering strategies to replace missing or damaged tissue advance, the focus on prevention and treatment of concomitant infection has also begun to emerge as an important area of research. Because the in vivo environment is a complex interaction between host tissue, implanted materials, and native immune system that cannot be replicated in vitro, animal models of infection are integral in evaluating the safety and efficacy of experimental treatments for infection. In this review, considerations for selecting an animal model, established models of infection, and areas that require further model development are discussed with regard to cutaneous, fascial, and orthopedic infections.


Oral and Maxillofacial Surgery Clinics of North America | 2014

Use of Porous Space Maintainers in Staged Mandibular Reconstruction

Allan M. Henslee; Patrick P. Spicer; Sarita R. Shah; Alexander M. Tatara; F. Kurtis Kasper; Antonios G. Mikos; Mark E. Wong

The success of mandibular reconstructions depends not only on restoring the form and function of lost bone but also on the preservation of the overlying soft tissue layer. In this case study, 5 porous polymethylmethacrylate space maintainers fabricated via patient-specific molds were implanted initially to maintain the vitality of the overlying oral mucosa during staged mandibular reconstructions. Three of the 5 patients healed well; the other 2 patients developed dehiscences, likely due to a thin layer of soft tissue overlying the implant. The results presented provide evidence that a larger investigation of space maintainers fabricated using this method is warranted.


Acta Biomaterialia | 2016

Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors

Alexander M. Tatara; Sarita R. Shah; Nagi Demian; Tang Ho; Jonathan W. Shum; Jeroen J.J.P. van den Beucken; John A. Jansen; Mark E. Wong; Antonios G. Mikos

Reconstruction of large mandibular defects is clinically challenging due to the need for donor tissue of appropriate shape and volume to facilitate high fidelity repair. In order to generate large vascularized tissues of custom geometry, bioreactors were implanted against the rib periosteum of 3-4year-old sheep for nine weeks. Bioreactors were filled with either morcellized autologous bone, synthetic ceramic particles, or a combination thereof. Tissues generated within synthetic graft-filled bioreactors were transferred into a large right-sided mandibular angle defect as either avascular grafts (n=3) or vascularized free flaps (n=3). After twelve additional weeks, reconstructed mandibular angles were harvested and compared to contralateral control angles. Per histologic and radiologic evaluation, a greater amount of mineralized tissue was generated in bioreactors filled with autologous graft although the quality of viable bone was not significantly different between groups. Genetic analyses of soft tissue surrounding bioreactor-generated tissues demonstrated similar early and late stage osteogenic biomarker expression (Runx2 and Osteocalcin) between the bioreactors and rib periosteum. Although no significant differences between the height of reconstructed and control mandibular angles were observed, the reconstructed mandibles had decreased bone volume. There were no differences between mandibles reconstructed with bioreactor-generated tissues transferred as flaps or grafts. Tissues used for mandibular reconstruction demonstrated integration with native bone as well as evidence of remodeling. In this study, we have demonstrated that synthetic scaffolds are sufficient to generate large volumes of mineralized tissue in an in vivo bioreactor for mandibular reconstruction. STATEMENT OF SIGNIFICANCE A significant clinical challenge in craniofacial surgery is the reconstruction of large mandibular defects. In this work, we demonstrated that vascularized tissues of large volume and custom geometry can be generated from in vivo bioreactors implanted against the rib periosteum in an ovine model. The effects of different bioreactor scaffold material on tissue ingrowth were measured. To minimize donor site morbidity, tissues generated from bioreactors filled with synthetic graft were transferred as either vascularized free flaps or avascular grafts to a large mandibular defect. It was demonstrated that synthetic graft in an in vivo bioreactor is sufficient to produce free tissue bone flaps capable of integrating with native tissues when transferred to a large mandibular defect in an ovine model.


Biomacromolecules | 2017

Synthesis and Characterization of Diol-Based Unsaturated Polyesters: Poly(diol fumarate) and Poly(diol fumarate-co-succinate)

Alexander M. Tatara; Emma Watson; Tejus Satish; David W. Scott; Dimitrios P. Kontoyiannis; Paul S. Engel; Antonios G. Mikos

In this work, we describe the synthesis and characterization of variants of poly(diol fumarate) and poly(diol fumarate-co-succinate). Through a Fischer esterification, α,ω-diols and dicarboxylic acids were polymerized to form aliphatic polyester comacromers. Because of the carbon-carbon double bond of fumaric acid, incorporating it into the macromer backbone structure resulted in unsaturated chains. By choosing α,ω-diols of different lengths (1,6-hexanediol, 1,8-octanediol, and 1,10-decanediol) and controlling the amount of fumaric acid in the dicarboxylic acid monomer feed (33, 50, and 100 mol %), nine diol-based macromer variants were synthesized and characterized for molecular weight, number of unsaturated bonds per chain, and thermal properties. Degradation and in vitro cytotoxicity were also measured in a subset of macromers. As proof-of-principle, macromer networks were photo-cross-linked to demonstrate the ability to perform free radical addition using the unsaturated macromer backbone. Cross-linked macromer networks were also characterized for physicochemical properties (swelling, sol fraction, compressive modulus) based on diol length and amount of unsaturated bonds. A statistical model was built using data generated from these diol-based macromers and macromer networks to evaluate the impact of monomer inputs on final macromer and macromer network properties. With the ability to be modified by free radical addition, biodegradable unsaturated polyesters serve as important macromers in the design of devices such as drug delivery vehicles and tissue scaffolds. Given the ability to extensively control final macromer properties based on monomer input parameters, poly(diol fumarate) and poly(diol fumarate-co-succinate) represent an exciting new class of macromers.

Collaboration


Dive into the Alexander M. Tatara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Wong

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitrios P. Kontoyiannis

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

F. Kurtis Kasper

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathaniel D. Albert

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Jansen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge