Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Mellmann is active.

Publication


Featured researches published by Alexander Mellmann.


PLOS ONE | 2011

Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology

Alexander Mellmann; Dag Harmsen; Craig Cummings; Emily B. Zentz; Shana R. Leopold; Alain Rico; Karola Prior; Rafael Szczepanowski; Yongmei Ji; Wenlan Zhang; Stephen F. McLaughlin; John K. Henkhaus; Benjamin Leopold; Martina Bielaszewska; Rita Prager; Pius Brzoska; Richard Moore; Simone Guenther; Jonathan M. Rothberg; Helge Karch

An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.


Lancet Infectious Diseases | 2011

Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study

Martina Bielaszewska; Alexander Mellmann; Wenlan Zhang; Robin Köck; Angelika Fruth; Andreas Bauwens; Georg Peters; Helge Karch

BACKGROUND In an ongoing outbreak of haemolytic uraemic syndrome and bloody diarrhoea caused by a virulent Escherichia coli strain O104:H4 in Germany (with some cases elsewhere in Europe and North America), 810 cases of the syndrome and 39 deaths have occurred since the beginning of May, 2011. We analysed virulence profiles and relevant phenotypes of outbreak isolates recovered in our laboratory. METHODS We analysed stool samples from 80 patients that had been submitted to the National Consulting Laboratory for Haemolytic Uraemic Syndrome in Münster, Germany, between May 23 and June 2, 2011. Isolates were screened with standard PCR for virulence genes of Shiga-toxin-producing E coli and a newly developed multiplex PCR for characteristic features of the outbreak strain (rfb(O104), fliC(H4), stx(2), and terD). Virulence profiles of the isolates were determined with PCR targeting typical virulence genes of Shiga-toxin-producing E coli and of other intestinal pathogenic E coli. We sequenced stx with Sanger sequencing and measured Shiga-toxin production, adherence to epithelial cells, and determined phylogeny and antimicrobial susceptibility. FINDINGS All isolates were of the HUSEC041 clone (sequence type 678). All shared virulence profiles combining typical Shiga-toxin-producing E coli (stx(2), iha, lpf(O26), lpf(O113)) and enteroaggregative E coli (aggA, aggR, set1, pic, aap) loci and expressed phenotypes that define Shiga-toxin-producing E coli and enteroaggregative E coli, including production of Shiga toxing 2 and aggregative adherence to epithelial cells. Isolates additionally displayed an extended-spectrum β-lactamase phenotype absent in HUSEC041. INTERPRETATION Augmented adherence of the strain to intestinal epithelium might facilitate systemic absorption of Shiga toxin and could explain the high progression to haemolytic uraemic syndrome. This outbreak demonstrates that blended virulence profiles in enteric pathogens, introduced into susceptible populations, can have extreme consequences for infected people. FUNDING German Federal Ministry of Education and Research, Network Zoonoses.


Journal of Clinical Microbiology | 2012

Multicenter Evaluation of a Sequence-Based Protocol for Subtyping Shiga Toxins and Standardizing Stx Nomenclature

Flemming Scheutz; Louise D. Teel; Lothar Beutin; Denis Piérard; Glenn Buvens; Helge Karch; Alexander Mellmann; Alfredo Caprioli; Rosangela Tozzoli; Stefano Morabito; Nancy A. Strockbine; Angela R. Melton-Celsa; Maria Carmen Arroyo Sanchez; Søren Persson; Alison D. O'Brien

ABSTRACT When Shiga toxin-producing Escherichia coli (STEC) strains emerged as agents of human disease, two types of toxin were identified: Shiga toxin type 1 (Stx1) (almost identical to Shiga toxin produced by Shigella dysenteriae type 1) and the immunologically distinct type 2 (Stx2). Subsequently, numerous STEC strains have been characterized that express toxins with variations in amino acid sequence, some of which confer unique biological properties. These variants were grouped within the Stx1 or Stx2 type and often assigned names to indicate that they were not identical in sequence or phenotype to the main Stx1 or Stx2 type. A lack of specificity or consistency in toxin nomenclature has led to much confusion in the characterization of STEC strains. Because serious outcomes of infection have been attributed to certain Stx subtypes and less so with others, we sought to better define the toxin subtypes within the main Stx1 and Stx2 types. We compared the levels of relatedness of 285 valid sequence variants of Stx1 and Stx2 and identified common sequences characteristic of each of three Stx/Stx1 and seven Stx2 subtypes. A novel, simple PCR subtyping method was developed, independently tested on a battery of 48 prototypic STEC strains, and improved at six clinical and research centers to test the reproducibility, sensitivity, and specificity of the PCR. Using a consistent schema for nomenclature of the Stx toxins and stx genes by phylogenetic sequence-based relatedness of the holotoxin proteins, we developed a typing approach that should obviate the need to bioassay each newly described toxin and that predicts important biological characteristics.


Journal of Clinical Microbiology | 2008

Evaluation of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry in Comparison to 16S rRNA Gene Sequencing for Species Identification of Nonfermenting Bacteria

Alexander Mellmann; Joann L. Cloud; T. Maier; Ursula Keckevoet; I. Ramminger; Peter C. Iwen; James J. Dunn; Gerri S. Hall; Deborah A. Wilson; P. LaSala; M. Kostrzewa; Dag Harmsen

ABSTRACT Nonfermenting bacteria are ubiquitous environmental opportunists that cause infections in humans, especially compromised patients. Due to their limited biochemical reactivity and different morphotypes, misidentification by classical phenotypic means occurs frequently. Therefore, we evaluated the use of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for species identification. By using 248 nonfermenting culture collection strains composed of 37 genera most relevant to human infections, a reference database was established for MALDI-TOF MS-based species identification according to the manufacturers recommendations for microflex measurement and MALDI BioTyper software (Bruker Daltonik GmbH, Leipzig, Germany), i.e., by using a mass range of 2,000 to 20,000 Da and a new pattern-matching algorithm. To evaluate the database, 80 blind-coded clinical nonfermenting bacterial strains were analyzed. As a reference method for species designation, partial 16S rRNA gene sequencing was applied. By 16S rRNA gene sequencing, 57 of the 80 isolates produced a unique species identification (≥99% sequence similarity); 11 further isolates gave ambiguous results at this threshold and were rated as identified to the genus level only. Ten isolates were identified to the genus level (≥97% similarity); and two isolates had similarity values below this threshold, were counted as not identified, and were excluded from further analysis. MALDI-TOF MS identified 67 of the 78 isolates (85.9%) included, in agreement with the results of the reference method; 9 were misidentified and 2 were unidentified. The identities of 10 randomly selected strains were 100% correct when three different mass spectrometers and four different cultivation media were used. Thus, MALDI-TOF MS-based species identification of nonfermenting bacteria provided accurate and reproducible results within 10 min without any substantial costs for consumables.


Emerging Infectious Diseases | 2008

Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli.

Alexander Mellmann; Martina Bielaszewska; Robin Köck; Alexander W. Friedrich; Angelika Fruth; Barbara Middendorf; Dag Harmsen; M. Alexander Schmidt; Helge Karch

Multilocus sequence typing of 169 non-O157 enterohemorrhagic Escherichia coli (EHEC) isolated from patients with hemolytic uremic syndrome (HUS) demonstrated 29 different sequence types (STs); 78.1% of these strains clustered in 5 STs. From all STs and serotypes identified, we established a reference panel of EHEC associated with HUS (HUSEC collection).


Journal of Clinical Microbiology | 2006

High Interlaboratory Reproducibility of DNA Sequence-Based Typing of Bacteria in a Multicenter Study

Marta Aires-de-Sousa; Kit Boye; H. de Lencastre; Ariane Deplano; Mark C. Enright; Jerome Etienne; Alexander W. Friedrich; Dag Harmsen; Anne Holmes; X. Huijsdens; Angela M. Kearns; Alexander Mellmann; Hélène Meugnier; J K Rasheed; Emile Spalburg; Birgit Strommenger; Marc Struelens; Fred C. Tenover; J Thomas; Ulrich Vogel; Henrik Westh; Xu Jg; Wolfgang Witte

ABSTRACT Current DNA amplification-based typing methods for bacterial pathogens often lack interlaboratory reproducibility. In this international study, DNA sequence-based typing of the Staphylococcus aureus protein A gene (spa, 110 to 422 bp) showed 100% intra- and interlaboratory reproducibility without extensive harmonization of protocols for 30 blind-coded S. aureus DNA samples sent to 10 laboratories. Specialized software for automated sequence analysis ensured a common typing nomenclature.


Nature Biotechnology | 2013

Updating benchtop sequencing performance comparison

Sebastian Jünemann; Fritz J. Sedlazeck; Karola Prior; Andreas Albersmeier; Uwe John; Jörn Kalinowski; Alexander Mellmann; Alexander Goesmann; Arndt von Haeseler; Jens Stoye; Dag Harmsen

In April 2012, your journal published a study by Loman et al.1 that systematically compared desktop next-generation sequencers (NGS) from three instrument providers. Using the custom scripts supplied by the authors, the same software and the same draft genome (with 153 remaining gaps within several scaffolds) as the reference, we reproduced their results with their data of the enterohemorrhagic Escherichia coli (EHEC) strain found in the 2011 outbreak in Germany. However, we wish to bring readers’ attention to some shortcomings in the report from Loman et al.1, focusing particularly on its discussion of read-level error analysis. NGS is a rapidly changing market, which clearly complicates the comparisons such as that made by Loman et al. Since the original study1, Illumina (San Diego) has launched the MiSeq sequencer officially and has released Nextera library construction kits and 2 × 250–base-pair (250-bp) paired-end (PE) sequencing chemistry. Furthermore, Life Technologies (Carlsbad, California), has made 200-bp and 300-bp kits available for the Ion Torrent Personal Genome Machine (PGM). Roche (Basel, Switzerland) has updated the Sequencing System software for its 454 GS Junior (GSJ) from version 2.6 to 2.7. In this report, we provide an up-to-date snapshot of how benchtop platforms have evolved since the previous study1.


PLOS Medicine | 2006

Automated DNA Sequence-Based Early Warning System for the Detection of Methicillin-Resistant Staphylococcus aureus Outbreaks

Alexander Mellmann; Alexander W. Friedrich; Nicole Rosenkötter; Jörg Rothgänger; Helge Karch; Ralf Reintjes; Dag Harmsen

Background The detection of methicillin-resistant Staphylococcus aureus (MRSA) usually requires the implementation of often rigorous infection-control measures. Prompt identification of an MRSA epidemic is crucial for the control of an outbreak. In this study we evaluated various early warning algorithms for the detection of an MRSA cluster. Methods and Findings Between 1998 and 2003, 557 non-replicate MRSA strains were collected from staff and patients admitted to a German tertiary-care university hospital. The repeat region of the S. aureus protein A (spa) gene in each of these strains was sequenced. Using epidemiological and typing information for the period 1998–2002 as reference data, clusters in 2003 were determined by temporal-scan test statistics. Various early warning algorithms (frequency, clonal, and infection control professionals [ICP] alerts) were tested in a prospective analysis for the year 2003. In addition, a newly implemented automated clonal alert system of the Ridom StaphType software was evaluated. A total of 549 of 557 MRSA were typeable using spa sequencing. When analyzed using scan test statistics, 42 out of 175 MRSA in 2003 formed 13 significant clusters (p < 0.05). These clusters were used as the “gold standard” to evaluate the various algorithms. Clonal alerts (spa typing and epidemiological data) were 100% sensitive and 95.2% specific. Frequency (epidemiological data only) and ICP alerts were 100% and 62.1% sensitive and 47.2% and 97.3% specific, respectively. The difference in specificity between clonal and ICP alerts was not significant. Both methods exhibited a positive predictive value above 80%. Conclusions Rapid MRSA outbreak detection, based on epidemiological and spa typing data, is a suitable alternative for classical approaches and can assist in the identification of potential sources of infection.


Applied and Environmental Microbiology | 2007

Shiga Toxin Gene Loss and Transfer In Vitro and In Vivo during Enterohemorrhagic Escherichia coli O26 Infection in Humans

Martina Bielaszewska; Rita Prager; Robin Köck; Alexander Mellmann; Wenlan Zhang; Helmut Tschäpe; Phillip I. Tarr; Helge Karch

ABSTRACT Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26 in vitro. The stx2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and evolutionary implications.


Journal of Clinical Microbiology | 2009

High Interlaboratory Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry-Based Species Identification of Nonfermenting Bacteria

Alexander Mellmann; F. Bimet; Chantal Bizet; A. D. Borovskaya; R. R. Drake; U. Eigner; A. M. Fahr; Ying He; E. N. Ilina; M. Kostrzewa; T. Maier; L. Mancinelli; W. Moussaoui; G. Prévost; L. Putignani; C. L. Seachord; Yi-Wei Tang; Dag Harmsen

ABSTRACT Matrix-assisted laser desorption ionization-time of flight mass spectrometry has emerged as a rapid, cost-effective alternative for bacterial species identification. Identifying 60 blind-coded nonfermenting bacteria samples, this international study (using eight laboratories) achieved 98.75% interlaboratory reproducibility. Only 6 of the 480 samples were misidentified due to interchanges (4 samples) or contamination (1 sample) or not identified because of insufficient signal intensity (1 sample).

Collaboration


Dive into the Alexander Mellmann's collaboration.

Top Co-Authors

Avatar

Helge Karch

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dag Harmsen

University of Münster

View shared research outputs
Top Co-Authors

Avatar

Alexander W. Friedrich

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin Köck

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge