Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Bielaszewska is active.

Publication


Featured researches published by Martina Bielaszewska.


The Journal of Infectious Diseases | 2002

Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms

Alexander W. Friedrich; Martina Bielaszewska; Wenlan Zhang; Matthias Pulz; Thorsten Kuczius; Andrea Ammon; Helge Karch

Shiga toxin (Stx)-producing Escherichia coli (STEC) from patients with hemolytic-uremic syndrome (HUS), patients with diarrhea without HUS, or asymptomatic subjects were genotyped to assess associations between stx2 variants and clinical manifestations of infection. Neither stx2d nor stx2e was found in 268 STEC isolates from patients with HUS. Of 262 STEC isolates from patients with diarrhea, stx(2d) was found in 41 (15.6%; P<.000001), and stx2e was found in 12 (4.6%; P=.0004). The stx2c genotype frequency was similar among isolates from patients with HUS (3.7%) and diarrhea (5.0%). The frequencies of stx2c, stx2d, and stx2e among 96 STEC isolates from asymptomatic subjects were comparable to those among isolates from patients with diarrhea. None of the 626 STEC isolates contained stx2f. All stx2d-positive or stx2e-positive STEC isolates were eae negative and originated from subjects older than those with STEC isolates with stx2c. stx2c-positive STEC isolates can cause HUS, but the presence of stx2d or stx2e may predict a milder disease with a minimal risk of HUS.


PLOS ONE | 2011

Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology

Alexander Mellmann; Dag Harmsen; Craig Cummings; Emily B. Zentz; Shana R. Leopold; Alain Rico; Karola Prior; Rafael Szczepanowski; Yongmei Ji; Wenlan Zhang; Stephen F. McLaughlin; John K. Henkhaus; Benjamin Leopold; Martina Bielaszewska; Rita Prager; Pius Brzoska; Richard Moore; Simone Guenther; Jonathan M. Rothberg; Helge Karch

An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.


Lancet Infectious Diseases | 2011

Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study

Martina Bielaszewska; Alexander Mellmann; Wenlan Zhang; Robin Köck; Angelika Fruth; Andreas Bauwens; Georg Peters; Helge Karch

BACKGROUND In an ongoing outbreak of haemolytic uraemic syndrome and bloody diarrhoea caused by a virulent Escherichia coli strain O104:H4 in Germany (with some cases elsewhere in Europe and North America), 810 cases of the syndrome and 39 deaths have occurred since the beginning of May, 2011. We analysed virulence profiles and relevant phenotypes of outbreak isolates recovered in our laboratory. METHODS We analysed stool samples from 80 patients that had been submitted to the National Consulting Laboratory for Haemolytic Uraemic Syndrome in Münster, Germany, between May 23 and June 2, 2011. Isolates were screened with standard PCR for virulence genes of Shiga-toxin-producing E coli and a newly developed multiplex PCR for characteristic features of the outbreak strain (rfb(O104), fliC(H4), stx(2), and terD). Virulence profiles of the isolates were determined with PCR targeting typical virulence genes of Shiga-toxin-producing E coli and of other intestinal pathogenic E coli. We sequenced stx with Sanger sequencing and measured Shiga-toxin production, adherence to epithelial cells, and determined phylogeny and antimicrobial susceptibility. FINDINGS All isolates were of the HUSEC041 clone (sequence type 678). All shared virulence profiles combining typical Shiga-toxin-producing E coli (stx(2), iha, lpf(O26), lpf(O113)) and enteroaggregative E coli (aggA, aggR, set1, pic, aap) loci and expressed phenotypes that define Shiga-toxin-producing E coli and enteroaggregative E coli, including production of Shiga toxing 2 and aggregative adherence to epithelial cells. Isolates additionally displayed an extended-spectrum β-lactamase phenotype absent in HUSEC041. INTERPRETATION Augmented adherence of the strain to intestinal epithelium might facilitate systemic absorption of Shiga toxin and could explain the high progression to haemolytic uraemic syndrome. This outbreak demonstrates that blended virulence profiles in enteric pathogens, introduced into susceptible populations, can have extreme consequences for infected people. FUNDING German Federal Ministry of Education and Research, Network Zoonoses.


Emerging Infectious Diseases | 2008

Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli.

Alexander Mellmann; Martina Bielaszewska; Robin Köck; Alexander W. Friedrich; Angelika Fruth; Barbara Middendorf; Dag Harmsen; M. Alexander Schmidt; Helge Karch

Multilocus sequence typing of 169 non-O157 enterohemorrhagic Escherichia coli (EHEC) isolated from patients with hemolytic uremic syndrome (HUS) demonstrated 29 different sequence types (STs); 78.1% of these strains clustered in 5 STs. From all STs and serotypes identified, we established a reference panel of EHEC associated with HUS (HUSEC collection).


Journal of Clinical Microbiology | 2001

Sorbitol-fermenting shiga toxin-producing Escherichia coli O157:H- strains : Epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis

Helge Karch; Martina Bielaszewska

The significance of Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 as the major cause of hemorrhagic colitis and the hemolytic-uremic syndrome (HUS) worldwide has been well established (for reviews, see references 21, 31, 41, and 60). The recognition of this pathogen has been facilitated by the availability of classical microbiological diagnostic procedures that are based on the characteristic phenotypic feature of this pathogen, in particular, its inability to ferment sorbitol after overnight incubation (40). However, in addition to E. coli O157:H7, STEC strains of serotype O157:H− (nonmotile) which do ferment sorbitol rapidly have emerged as important causes of human diseases in continental Europe during the past decade (7, 8, 9–12, 16, 22, 27, 35, 39). Such strains are missed by diagnostic procedures recommended for the detection of E. coli O157:H7, and their significance in other parts of the world might thus be underestimated. This review summarizes the current knowledge on the significance of sorbitol-fermenting (SF) STEC O157:H− strains as causes of human diseases, the epidemiology of the infection, phenotypic and molecular characteristics of these pathogens, and strategies that are available for their microbiological diagnosis.


Clinical Infectious Diseases | 2006

Shiga Toxin Activatable by Intestinal Mucus in Escherichia coli Isolated from Humans: Predictor for a Severe Clinical Outcome

Martina Bielaszewska; Alexander W. Friedrich; Thomas Aldick; Robin Schürk-Bulgrin; Helge Karch

BACKGROUND Some Escherichia coli produce Shiga toxin (Stx) in which cytotoxicity is increased (activated) by intestinal mucus and elastase (Stx2d(activatable)). These strains are highly virulent in mice, but their association with human disease is poorly understood. We investigated the prevalence of Stx2d(activatable) among Stx-producing E. coli (STEC) isolated from humans and the association between production of this Stx and the clinical outcome of infection. METHODS A total of 922 STEC isolates obtained from patients with hemolytic uremic syndrome or bloody or nonbloody diarrhea or from asymptomatic carriers were tested for the gene encoding Stx2d(activatable) by PCR and PstI restriction analysis. The toxin activatibility by human and mouse intestinal mucus and by an elastase was determined by quantifying the cytotoxicity using the Vero cell assay. RESULTS The stx(2d-activatable) gene was identified in 60 (6.5%) of 922 STEC strains; in 31 of these strains, it was the sole stx gene. Thirty of these 31 strains produced Stx2d(activatable). All of them lacked the intimin-encoding eae gene. Among eae-negative STEC, which typically cause mild diarrhea or asymptomatic infection, production of Stx2d(activatable) was significantly associated with the ability to cause severe disease, including bloody diarrhea (P<.001), and with systemic complications, such as hemolytic uremic syndrome (P<.001). CONCLUSIONS Production of Stx2d(activatable) by the infecting STEC may predict a severe clinical outcome of the infection, with progression to hemolytic uremic syndrome. A prompt and comprehensive subtyping of stx genes in STEC isolates is necessary to alert the treating physician that a patient is at risk of developing hemolytic uremic syndrome, even though the infecting STEC lacks eae.


The Journal of Infectious Diseases | 2003

Shiga Toxin–Producing Escherichia coli in Montana: Bacterial Genotypes and Clinical Profiles

Jill K. Jelacic; Todd Damrow; Gilbert S. Chen; Srdjan Jelacic; Martina Bielaszewska; Marcia A. Ciol; Humberto M. Carvalho; Angela R. Melton-Celsa; Alison D. O’Brien; Phillip I. Tarr

The diseases and virulence genes associated with Shiga toxin-producing Escherichia coli (STEC) are characterized incompletely. We analyzed, by polymerase chain reaction, 82 STEC isolates collected prospectively in Montana and profiled associated illnesses by patient chart review. All E. coli O157:H7 contained stx2-group genes, as well as eae, iha, espA, and ehxA; 84% contained stx1. Non-O157:H7 STEC less frequently contained stx1 (P=.046), stx2 (P<.001), iha (P<.001), eae, and espA (P=.039 for both), were isolated less often from patients treated in emergency departments (P=.022), and tended to be associated less frequently with bloody diarrhea (P=.061). There were no significant associations between stx genotype and bloody diarrhea, but isolates containing stx2c or stx(2d-activatable) were recovered more often from patients who underwent diagnostic or therapeutic procedures (P=.033). Non-O157:H7 STEC are more heterogeneous and cause bloody diarrhea less frequently than do E. coli O157:H7. Bloody diarrhea cannot be attributed simply to the stx genotype of the infecting organism.


Journal of Clinical Microbiology | 2002

Identification, Characterization, and Distribution of a Shiga Toxin 1 Gene Variant (stx1c) in Escherichia coli Strains Isolated from Humans

Wenlan Zhang; Martina Bielaszewska; Thorsten Kuczius; Helge Karch

ABSTRACT By using sequence analysis of Shiga toxin 1 (Stx 1) genes from human and ovine Stx-producing Escherichia coli (STEC) strains, we identified an Stx1 variant in STEC of human origin that was identical to the Stx1 variant from ovine STEC, but demonstrated only 97.1 and 96.6% amino acid sequence identity in its A and B subunits, respectively, to the Stx1 encoded by bacteriophage 933J. We designated this variant “Stx1c” and developed stxB1 restriction fragment length polymorphism and stx1c-specific PCR strategies to determine the frequency and distribution of stx1c among 212 STEC strains isolated from humans. stx1c was identified in 36 (17.0%) of 212 STEC strains, 19 of which originated from asymptomatic subjects and 16 of which were from patients with uncomplicated diarrhea. stx1c was most frequently (in 23 STEC strains [63.9%]) associated with stx2d, but 12 (33.3%) of the 36 STEC strains possessed stx1c only. A single STEC strain possessed stx1c together with stx2 and was isolated from a patient with hemolytic-uremic syndrome. All 36 stx1c-positive STEC strains were eae negative and belonged to 10 different serogroups, none of which was O157, O26, O103, O111, or O145. Stx1c was produced by all stx1c-containing STEC strains, but reacted weakly with a commercial immunoassay. We conclude that STEC strains harboring the stx1c variant account for a significant proportion of human STEC isolates. The procedures developed in this study now allow the determination of the frequency of STEC strains harboring stx1c among clinical STEC isolates and their association with human disease in prospective studies.


Applied and Environmental Microbiology | 2007

Shiga Toxin Gene Loss and Transfer In Vitro and In Vivo during Enterohemorrhagic Escherichia coli O26 Infection in Humans

Martina Bielaszewska; Rita Prager; Robin Köck; Alexander Mellmann; Wenlan Zhang; Helmut Tschäpe; Phillip I. Tarr; Helge Karch

ABSTRACT Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26 in vitro. The stx2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and evolutionary implications.


Infection and Immunity | 2003

Cytolethal Distending Toxin Gene Cluster in Enterohemorrhagic Escherichia coli O157:H− and O157:H7: Characterization and Evolutionary Considerations

Andreas Janka; Martina Bielaszewska; Ulrich Dobrindt; Lilo Greune; M. Alexander Schmidt; Helge Karch

ABSTRACT We identified a cytolethal distending toxin (cdt) gene cluster in 87, 6, and 0% of sorbitol-fermenting (SF) enterohemorrhagic Escherichiacoli (EHEC) O157:H−, EHEC O157:H7, and E. coli O55:H7/H− strains, respectively. The toxin was expressed by the wild-type EHEC O157 strains and by a cdt-containing cosmid from a library of SF EHEC O157:H− strain 493/89. The cdt flanks in strain 493/89 were homologous to bacteriophages P2 and lambda. Our data demonstrate that cdt, encoding a potential virulence factor, is present in the EHEC O157 complex and suggest that cdt may have been acquired by phage transduction.

Collaboration


Dive into the Martina Bielaszewska's collaboration.

Top Co-Authors

Avatar

Helge Karch

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander W. Friedrich

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge