Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Mildner is active.

Publication


Featured researches published by Alexander Mildner.


Nature Neuroscience | 2007

Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions

Alexander Mildner; Hauke Schmidt; Mirko Nitsche; Doron Merkler; Uwe-Karsten Hanisch; Matthias Mack; Mathias Heikenwalder; Wolfgang Brück; Josef Priller; Marco Prinz

Microglia are crucially important myeloid cells in the CNS and constitute the first immunological barrier against pathogens and environmental insults. The factors controlling microglia recruitment from the blood remain elusive and the direct circulating microglia precursor has not yet been identified in vivo. Using a panel of bone marrow chimeric and adoptive transfer experiments, we found that circulating Ly-6ChiCCR2+ monocytes were preferentially recruited to the lesioned brain and differentiated into microglia. Notably, microglia engraftment in CNS pathologies, which are not associated with overt blood-brain barrier disruption, required previous conditioning of brain (for example, by direct tissue irradiation). Our results identify Ly-6ChiCCR2+ monocytes as direct precursors of microglia in the adult brain and establish the importance of local factors in the adult CNS for microglia engraftment.


Science | 2014

Massively parallel single cell RNA-Seq for marker-free decomposition of tissues into cell types

Diego Jaitin; Ephraim Kenigsberg; Hadas Keren-Shaul; Naama Elefant; Franziska Paul; Irina Zaretsky; Alexander Mildner; Nadav Cohen; Steffen Jung; Amos Tanay; Ido Amit

Sequencing of RNA from thousands of individual immune cells allows unbiased identification of cellular subtypes. In multicellular organisms, biological function emerges when heterogeneous cell types form complex organs. Nevertheless, dissection of tissues into mixtures of cellular subpopulations is currently challenging. We introduce an automated massively parallel single-cell RNA sequencing (RNA-seq) approach for analyzing in vivo transcriptional states in thousands of single cells. Combined with unsupervised classification algorithms, this facilitates ab initio cell-type characterization of splenic tissues. Modeling single-cell transcriptional states in dendritic cells and additional hematopoietic cell types uncovers rich cell-type heterogeneity and gene-modules activity in steady state and after pathogen activation. Cellular diversity is thereby approached through inference of variable and dynamic pathway activity rather than a fixed preprogrammed cell-type hierarchy. These data demonstrate single-cell RNA-seq as an effective tool for comprehensive cellular decomposition of complex tissues. Introducing MARS-Seq Immune cells are typically differentiated by surface markers; however, this designation is somewhat crude and does not allow for fine distinctions that might be characterized by their RNA transcripts. Jaitin et al. (p. 776) used massively parallel single-cell RNA-sequencing (MARS-Seq) analysis to explore cellular heterogeneity within the immune system by assembling an automated experimental platform that enables RNA profiling of cells sorted from tissues using flow cytometry. More than 1000 cells could be sequenced, and unsupervised clustering analysis of the RNA profiles revealed distinct cellular groupings that corresponded to B cells, macrophages, and dendritic cells. This approach provides the ability to perform a bottom-up characterization of in vivo cell-type landscapes independent of cell markers or prior knowledge.


Science | 2014

Chromatin state dynamics during blood formation

David Lara-Astiaso; Assaf Weiner; Erika Lorenzo-Vivas; Irina Zaretsky; Diego Jaitin; Eyal David; Hadas Keren-Shaul; Alexander Mildner; Deborah R. Winter; Steffen Jung; Nir Friedman; Ido Amit

Opening and closing blood enhancers As cells develop and differentiate into different types, the shape and accessibility of their DNA can change. Lara-Astiaso et al. studied this phenomenon in blood. They developed a technique that examines a relatively small number of cells to identify the changes that affect DNA during blood development. They found that the DNA of noncoding regions, called enhancers, is set in an open position when cells are undifferentiated and able to take on a variety of roles and gradually closes as cells mature into their final forms. Science, this issue p. 943 A chromatin precipitation technique identifies changes during the differentiation of blood cells. Chromatin modifications are crucial for development, yet little is known about their dynamics during differentiation. Hematopoiesis provides a well-defined model to study chromatin state dynamics; however, technical limitations impede profiling of homogeneous differentiation intermediates. We developed a high-sensitivity indexing-first chromatin immunoprecipitation approach to profile the dynamics of four chromatin modifications across 16 stages of hematopoietic differentiation. We identify 48,415 enhancer regions and characterize their dynamics. We find that lineage commitment involves de novo establishment of 17,035 lineage-specific enhancers. These enhancer repertoire expansions foreshadow transcriptional programs in differentiated cells. Combining our enhancer catalog with gene expression profiles, we elucidate the transcription factor network controlling chromatin dynamics and lineage specification in hematopoiesis. Together, our results provide a comprehensive model of chromatin dynamics during development.


Immunity | 2008

Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system

Marco Prinz; Hauke Schmidt; Alexander Mildner; Klaus-Peter Knobeloch; Uwe-Karsten Hanisch; Jenni Raasch; Doron Merkler; Claudia N. Detje; Ilona Gutcher; Jörg Mages; Roland Lang; Roland Martin; Ralf Gold; Burkhard Becher; Wolfgang Brück; Ulrich Kalinke

The action of type I interferons in the central nervous system (CNS) during autoimmunity is largely unknown. Here, we demonstrate elevated interferon beta concentrations in the CNS, but not blood, of mice with experimental autoimmune encephalomyelitis (EAE), a model for CNS autoimmunity. Furthermore, mice devoid of the broadly expressed type I IFN receptor (IFNAR) developed exacerbated clinical disease accompanied by a markedly higher inflammation, demyelination, and lethality without shifting the T helper 17 (Th17) or Th1 cell immune response. Whereas adoptive transfer of encephalitogenic T cells led to enhanced disease in Ifnar1(-/-) mice, newly created conditional mice with B or T lymphocyte-specific IFNAR ablation showed normal EAE. The engagement of IFNAR on neuroectodermal CNS cells had no protective effect. In contrast, absence of IFNAR on myeloid cells led to severe disease with an enhanced effector phase and increased lethality, indicating a distinct protective function of type I IFNs during autoimmune inflammation of the CNS.


Cell | 2015

Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors

Franziska Paul; Ya’ara Arkin; Amir Giladi; Diego Jaitin; Ephraim Kenigsberg; Hadas Keren-Shaul; Deborah R. Winter; David Lara-Astiaso; Meital Gury; Assaf Weiner; Eyal David; Nadav Cohen; Felicia Kathrine Bratt Lauridsen; Simon Haas; Andreas Schlitzer; Alexander Mildner; Florent Ginhoux; Steffen Jung; Andreas Trumpp; Bo T. Porse; Amos Tanay; Ido Amit

Within the bone marrow, stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with in vivo differentiation potential or gene regulatory mechanisms. Here, we comprehensively map myeloid progenitor subpopulations by transcriptional sorting of single cells from the bone marrow. We describe multiple progenitor subgroups, showing unexpected transcriptional priming toward seven differentiation fates but no progenitors with a mixed state. Transcriptional differentiation is correlated with combinations of known and previously undefined transcription factors, suggesting that the process is tightly regulated. Histone maps and knockout assays are consistent with early transcriptional priming, while traditional transplantation experiments suggest that in vivo priming may still allow for plasticity given strong perturbations. These data establish a reference model and general framework for studying hematopoiesis at single-cell resolution.


Immunity | 2014

Development and function of dendritic cell subsets.

Alexander Mildner; Steffen Jung

Classical dendritic cells (cDCs) form a critical interface between innate and adaptive immunity. As myeloid immune cell sentinels, cDCs are specialized in the sensing of pathogen challenges and cancer. They translate the latter for T cells into peptide form. Moreover, cDCs provide additional critical information on the original antigen context to trigger a diverse spectrum of appropriate protective responses. Here we review recent progress in our understanding of cDC subsets in mice. We will discuss cDC subset ontogeny and transcription factor dependencies, as well as emerging functional specializations within the cDC compartment in lymphoid and nonlymphoid tissues.


Brain | 2009

CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system

Alexander Mildner; Matthias Mack; Hauke Schmidt; Wolfgang Brück; Marija Djukic; Mark D. Zabel; Andrea Hille; Josef Priller; Marco Prinz

The chemokine receptor CCR2 plays a vital role for the induction of autoimmunity in the central nervous system. However, it remains unclear how the pathogenic response is mediated by CCR2-bearing cells. By combining bone marrow chimerism with gene targeting we detected a mild disease-modulating role of CCR2 during experimental autoimmune encephalomyelitis, a model for central nervous system autoimmunity, on radio-resistant cells that was independent from targeted CCR2 expression on endothelia. Interestingly, absence of CCR2 on lymphocytes did not influence autoimmune demyelination. In contrast, engagement of CCR2 on accessory cells was required for experimental autoimmune encephalomyelitis induction. CCR2+Ly-6Chi monocytes were rapidly recruited to the inflamed central nervous system and were crucial for the effector phase of disease. Selective depletion of this specific monocyte subpopulation through engagement of CCR2 strongly reduced central nervous system autoimmunity. Collectively, these data indicate a disease-promoting role of CCR2+Ly-6Chi monocytes during autoimmune inflammation of the central nervous system.


Nature Genetics | 2007

Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes.

Celia M. Kassmann; Corinna Lappe-Siefke; Myriam Baes; Britta Brügger; Alexander Mildner; Hauke B. Werner; Oliver Natt; Thomas Michaelis; Marco Prinz; Jens Frahm; Klaus-Armin Nave

Oligodendrocytes myelinate axons for rapid impulse conduction and contribute to normal axonal functions in the central nervous system. In multiple sclerosis, demyelination is caused by autoimmune attacks, but the role of oligodendroglial cells in disease progression and axon degeneration is unclear. Here we show that oligodendrocytes harbor peroxisomes whose function is essential for maintaining white matter tracts throughout adult life. By selectively inactivating the import factor PEX5 in myelinating glia, we generated mutant mice that developed normally, but within several months showed ataxia, tremor and premature death. Absence of functional peroxisomes from oligodendrocytes caused widespread axonal degeneration and progressive subcortical demyelination, but did not interfere with glial survival. Moreover, it caused a strong proinflammatory milieu and, unexpectedly, the infiltration of B and activated CD8+ T cells into brain lesions. We conclude that peroxisomes provide oligodendrocytes with an essential neuroprotective function against axon degeneration and neuroinflammation, which is relevant for human demyelinating diseases.


The Journal of Neuroscience | 2011

Distinct and Non-Redundant Roles of Microglia and Myeloid Subsets in Mouse Models of Alzheimer's Disease

Alexander Mildner; Bernhard Schlevogt; Katrin Kierdorf; Chotima Böttcher; Daniel Erny; Markus P. Kummer; Michael Quinn; Wolfgang Brück; Ingo Bechmann; Michael T. Heneka; Josef Priller; Marco Prinz

Mononuclear phagocytes are important modulators of Alzheimers disease (AD), but the specific functions of resident microglia, bone marrow-derived mononuclear cells, and perivascular macrophages have not been resolved. To elucidate the spatiotemporal roles of mononuclear phagocytes during disease, we targeted myeloid cell subsets from different compartments and examined disease pathogenesis in three different mouse models of AD (APPswe/PS1, APPswe, and APP23 mice). We identified chemokine receptor 2 (CCR2)-expressing myeloid cells as the population that was preferentially recruited to β-amyloid (Aβ) deposits. Unexpectedly, AD brains with dysfunctional microglia and devoid of parenchymal bone marrow-derived phagocytes did not show overt changes in plaque pathology and Aβ load. In contrast, restriction of CCR2 deficiency to perivascular myeloid cells drastically impaired β-amyloid clearance and amplified vascular Aβ deposition, while parenchymal plaque deposition remained unaffected. Together, our data advocate selective functions of CCR2-expressing myeloid subsets, which could be targeted specifically to modify disease burden in AD.


Annual Review of Immunology | 2015

Macrophages: Development and Tissue Specialization

Chen Varol; Alexander Mildner; Steffen Jung

Macrophages are myeloid immune cells that are strategically positioned throughout the body tissues, where they ingest and degrade dead cells, debris, and foreign material and orchestrate inflammatory processes. Here we review two major recent paradigm shifts in our understanding of tissue macrophage biology. The first is the realization that most tissue-resident macrophages are established prenatally and maintained through adulthood by longevity and self-renewal. Their generation and maintenance are thus independent from ongoing hematopoiesis, although the cells can be complemented by adult monocyte-derived macrophages. Second, aside from being immune sentinels, tissue macrophages form integral components of their host tissue. This entails their specialization in response to local environmental cues to contribute to the development and specific function of their tissue of residence. Factors that govern tissue macrophage specialization are emerging. Moreover, tissue specialization is reflected in discrete gene expression profiles of macrophages, as well as epigenetic signatures reporting actual and potential enhancer usage.

Collaboration


Dive into the Alexander Mildner's collaboration.

Top Co-Authors

Avatar

Marco Prinz

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Steffen Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Yona

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Matthias Mack

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Ido Amit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hauke Schmidt

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Roland Nau

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Elik Chapnik

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Eran Hornstein

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge