Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eran Hornstein is active.

Publication


Featured researches published by Eran Hornstein.


Nature Genetics | 2006

Canalization of development by microRNAs

Eran Hornstein; Noam Shomron

Animal development is an extremely robust process resulting in stereotyped outcomes. Canalization is a design principle wherein developmental pathways are stabilized to increase phenotypic reproducibility. Recent revelations into microRNA (miRNA) function suggest that miRNAs act as key players in canalizing genetic programs. We suggest that miRNA interactions with the network of protein-coding genes evolved to buffer stochastic perturbations and thereby confer robustness to developmental genetic programs.


Stem Cells | 2006

Human Embryonic Stem Cells and Their Differentiated Derivatives Are Less Susceptible to Immune Rejection Than Adult Cells

Micha Drukker; Helena Katchman; Gil Katz; Smadar Friedman; Elias Shezen; Eran Hornstein; Ofer Mandelboim; Yair Reisner; Nissim Benvenisty

Differentiated cell types derived from human embryonic stem cells (hESCs) may serve in the future to treat various human diseases. A crucial step toward their successful clinical application is to examine the immune response that might be launched against them after transplantation. We used two experimental platforms to examine the in vivo leukocyte response toward hESCs. First, immunocompetent and immunodeficient mouse strains were used to identify T cells as the major component that causes xenorejection of hESCs. Second, mice that were conditioned to carry peripheral blood leukocytes from human origin were used to test the human leukocyte alloresponse toward undifferentiated and differentiated hESCs. Using this model, we have detected only a minute immune response toward undifferentiated as well as differentiated hESCs over the course of 1 month, although control adult grafts were repeatedly infiltrated with lymphocytes and destroyed. Our data show that the cells evade immune destruction due to a low immunostimulatory potential. Nevertheless, a human cytotoxic T lymphocyte clone that was specifically prepared to recognize two hESC lines could lyse the cells after major histocompatibility complex class I (MHC‐I) induction. Although MHC‐I levels in hESCs are sufficient for rejection by cytotoxic T cells, our data suggest that the immunostimulatory capacity of the cells is very low. Thus, immunosuppressive regimens for hESC‐based therapeutics could be highly reduced compared with conventional organ transplantation because direct allorejection processes of hESCs and their derivatives are considerably weaker.


Nature | 2005

The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development

Eran Hornstein; Jennifer H. Mansfield; Soraya Yekta; Jimmy Kuang-Hsien Hu; Brian D. Harfe; Michael T. McManus; Scott Baskerville; David P. Bartel; Clifford J. Tabin

MicroRNAs (miRNAs) are an abundant class of gene regulatory molecules (reviewed in refs 1, 2). Although computational work indicates that miRNAs repress more than a third of human genes, their roles in vertebrate development are only now beginning to be determined. Here we show that miR-196 acts upstream of Hoxb8 and Sonic hedgehog (Shh) in vivo in the context of limb development, thereby identifying a previously observed but uncharacterized inhibitory activity that operates specifically in the hindlimb. Our data indicate that miR-196 functions in a fail-safe mechanism to assure the fidelity of expression domains that are primarily regulated at the transcriptional level, supporting the idea that many vertebrate miRNAs may function as a secondary level of gene regulation.


Molecular and Cellular Biology | 2001

Amino Acid-Induced Translation of TOP mRNAs Is Fully Dependent on Phosphatidylinositol 3-Kinase-Mediated Signaling, Is Partially Inhibited by Rapamycin, and Is Independent of S6K1 and rpS6 Phosphorylation

Hua Tang; Eran Hornstein; Miri Stolovich; Galit Levy; Mark Livingstone; Dennis J. Templeton; Joseph Avruch; Oded Meyuhas

ABSTRACT Vertebrate TOP mRNAs contain an oligopyrimidine tract at their 5′ termini (5′TOP) and encode components of the translational machinery. Previously it has been shown that they are subject to selective translational repression upon growth arrest and that their translational behavior correlates with the activity of S6K1. We now show that the translation of TOP mRNAs is rapidly repressed by amino acid withdrawal and that this nutritional control depends strictly on the integrity of the 5′TOP motif. However, neither phosphorylation of ribosomal protein (rp) S6 nor activation of S6K1 per se is sufficient to relieve the translational repression of TOP mRNAs in amino acid-starved cells. Likewise, inhibition of S6K1 activity and rpS6 phosphorylation by overexpression of dominant-negative S6K1 mutants failed to suppress the translational activation of TOP mRNAs in amino acid-refed cells. Furthermore, TOP mRNAs were translationally regulated by amino acid sufficiency in embryonic stem cells lacking both alleles of the S6K1 gene. Inhibition of mTOR by rapamycin led to fast and complete repression of S6K1, as judged by rpS6 phosphorylation, but to only partial and delayed repression of translational activation of TOP mRNAs. In contrast, interference in the phosphatidylinositol 3-kinase (PI3-kinase)-mediated pathway by chemical or genetic manipulations blocked rapidly and completely the translational activation of TOP mRNAs. It appears, therefore, that translational regulation of TOP mRNAs, at least by amino acids, (i) is fully dependent on PI3-kinase, (ii) is partially sensitive to rapamycin, and (iii) requires neither S6K1 activity nor rpS6 phosphorylation.


Molecular and Cellular Biology | 2002

Transduction of Growth or Mitogenic Signals into Translational Activation of TOP mRNAs Is Fully Reliant on the Phosphatidylinositol 3-Kinase-Mediated Pathway but Requires neither S6K1 nor rpS6 Phosphorylation

Miri Stolovich; Hua Tang; Eran Hornstein; Galit Levy; Ruth Cohen; Sun Sik Bae; Morris J. Birnbaum; Oded Meyuhas

ABSTRACT Translation of terminal oligopyrimidine tract (TOP) mRNAs, which encode multiple components of the protein synthesis machinery, is known to be controlled by mitogenic stimuli. We now show that the ability of cells to progress through the cell cycle is not a prerequisite for this mode of regulation. TOP mRNAs can be translationally activated when PC12 or embryonic stem (ES) cells are induced to grow (increase their size) by nerve growth factor and retinoic acid, respectively, while remaining mitotically arrested. However, both growth and mitogenic signals converge via the phosphatidylinositol 3-kinase (PI3-kinase)-mediated pathway and are transduced to efficiently translate TOP mRNAs. Translational activation of TOP mRNAs can be abolished by LY294002, a PI3-kinase inhibitor, or by overexpression of PTEN as well as by dominant-negative mutants of PI3-kinase or its effectors, PDK1 and protein kinase Bα (PKBα). Likewise, overexpression of constitutively active PI3-kinase or PKBα can relieve the translational repression of TOP mRNAs in quiescent cells. Both mitogenic and growth signals lead to phosphorylation of ribosomal protein S6 (rpS6), which precedes the translational activation of TOP mRNAs. Nevertheless, neither rpS6 phosphorylation nor its kinase, S6K1, is essential for the translational response of these mRNAs. Thus, TOP mRNAs can be translationally activated by growth or mitogenic stimuli of ES cells, whose rpS6 is constitutively unphosphorylated due to the disruption of both alleles of S6K1. Similarly, complete inhibition of mammalian target of rapamycin (mTOR) and its effector S6K by rapamycin in various cell lines has only a mild repressive effect on the translation of TOP mRNAs. It therefore appears that translation of TOP mRNAs is primarily regulated by growth and mitogenic cues through the PI3-kinase pathway, with a minor role, if any, for the mTOR pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2010

miRNA malfunction causes spinal motor neuron disease

Sharon Haramati; Elik Chapnik; Yehezkel Sztainberg; Raya Eilam; Raaya Zwang; Noga Gershoni; Edwina McGlinn; Patrick W. Heiser; Anne Marie Wills; Itzhak Wirguin; Lee L. Rubin; Hidemi Misawa; Clifford J. Tabin; Robert H. Brown; Alon Chen; Eran Hornstein

Defective RNA metabolism is an emerging mechanism involved in ALS pathogenesis and possibly in other neurodegenerative disorders. Here, we show that microRNA (miRNA) activity is essential for long-term survival of postmitotic spinal motor neurons (SMNs) in vivo. Thus, mice that do not process miRNA in SMNs exhibit hallmarks of spinal muscular atrophy (SMA), including sclerosis of the spinal cord ventral horns, aberrant end plate architecture, and myofiber atrophy with signs of denervation. Furthermore, a neurofilament heavy subunit previously implicated in motor neuron degeneration is specifically up-regulated in miRNA-deficient SMNs. We demonstrate that the heavy neurofilament subunit is a target of miR-9, a miRNA that is specifically down-regulated in a genetic model of SMA. These data provide evidence for miRNA function in SMN diseases and emphasize the potential role of miR-9–based regulatory mechanisms in adult neurons and neurodegenerative states.


The EMBO Journal | 2011

miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors.

Tal Melkman-Zehavi; Roni Oren; Sharon Kredo-Russo; Tirosh Shapira; Amitai D. Mandelbaum; Natalia Rivkin; Tomer Nir; Kim A. Lennox; Mark A. Behlke; Yuval Dor; Eran Hornstein

MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated β‐cells remain unclear. Here, we show that miRNA inactivation in β‐cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1‐deficient β‐cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR‐24, miR‐26, miR‐182 or miR‐148 in cultured β‐cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA‐dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors.


The Journal of Neuroscience | 2011

microRNA as Repressors of Stress-Induced Anxiety: The Case of Amygdalar miR-34

Sharon Haramati; Inbal Navon; Orna Issler; Gili Ezra-Nevo; Shosh Gil; Raaya Zwang; Eran Hornstein; Alon Chen

The etiology and pathophysiology of anxiety and mood disorders is linked to inappropriate regulation of the central stress response. To determine whether microRNAs have a functional role in the regulation of the stress response, we inactivated microRNA processing by a lentiviral-induced local ablation of the Dicer gene in the central amygdala (CeA) of adult mice. CeA Dicer ablation induced a robust increase in anxiety-like behavior, whereas manipulated neurons survive and appear to exhibit normal gross morphology in the time period examined. We also observed that acute stress in wild-type mice induced a differential expression profile of microRNAs in the amygdala. Bioinformatic analysis identified putative gene targets for these stress-responsive microRNAs, some of which are known to be associated with stress. One of the prominent stress-induced microRNAs found in this screen, miR-34c, was further confirmed to be upregulated after acute and chronic stressful challenge and downregulated in Dicer ablated cells. Lentivirally mediated overexpression of miR34c specifically within the adult CeA induced anxiolytic behavior after challenge. Of particular interest, one of the miR-34c targets is the stress-related corticotropin releasing factor receptor type 1 (CRFR1) mRNA, regulated via a single evolutionary conserved seed complementary site on its 3′ UTR. Additional in vitro studies demonstrated that miR-34c reduces the responsiveness of cells to CRF in neuronal cells endogenously expressing CRFR1. Our results suggest a physiological role for microRNAs in regulating the central stress response and position them as potential targets for treatment of stress-related disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MicroRNAs are essential for development and function of inner ear hair cells in vertebrates

Lilach M. Friedman; Amiel A. Dror; Eyal Mor; Tamar Tenne; Ginat Toren; Takunori Satoh; Deborah J. Biesemeier; Noam Shomron; Donna M. Fekete; Eran Hornstein; Karen B. Avraham

MicroRNAs (miRNAs) inhibit the translation of target mRNAs and affect, directly or indirectly, the expression of a large portion of the protein-coding genes. This study focuses on miRNAs that are expressed in the mouse cochlea and vestibule, the 2 inner ear compartments. A conditional knock-out mouse for Dicer1 demonstrated that miRNAs are crucial for postnatal survival of functional hair cells of the inner ear. We identified miRNAs that have a role in the vertebrate developing inner ear by combining miRNA transcriptome analysis, spatial and temporal expression patterns, and bioinformatics. Microarrays revealed similar miRNA profiles in newborn-mouse whole cochleae and vestibules, but different temporal and spatial expression patterns of six miRNAs (miR-15a, miR-18a, miR-30b, miR-99a, miR-182, and miR-199a) may reflect their roles. Two of these miRNAs, miR-15a-1 and miR-18a, were also shown to be crucial for zebrafish inner ear development and morphogenesis. To suggest putative target mRNAs whose translation may be inhibited by selected miRNAs, we combined bioinformatics-based predictions and mRNA expression data. Finally, we present indirect evidence that Slc12a2, Cldn12, and Bdnf mRNAs may be targets for miR-15a. Our data support the hypothesis that inner ear tissue differentiation and maintenance are regulated and controlled by conserved sets of cell-specific miRNAs in both mouse and zebrafish.


Nature Immunology | 2011

Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk

Moshe Biton; Avi Levin; Michal Slyper; Irit Alkalay; Elad Horwitz; Hagar Mor; Sharon Kredo-Russo; Tali Avnit-Sagi; Gady Cojocaru; Farid Zreik; Zvi Bentwich; Matthew N. Poy; David Artis; Michael D. Walker; Eran Hornstein; Eli Pikarsky; Yinon Ben-Neriah

Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa–immune system crosstalk necessary for mounting protective T helper type 2 (TH2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1Δgut), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELMβ, a key TH2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1Δgut mice with helminths favored a futile TH1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a TH2-facilitating epithelial cytokine; this indicated a TH2-amplification loop. We found that miR-375 was required for RELMβ expression in vivo; miR-375-deficient mice had significantly less intestinal RELMβ, which possibly explains the greater susceptibility of Dicer1Δgut mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.

Collaboration


Dive into the Eran Hornstein's collaboration.

Top Co-Authors

Avatar

Elik Chapnik

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon Haramati

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sharon Kredo-Russo

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Alexander Mildner

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Anna Emde

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Natalia Rivkin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Oded Meyuhas

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Omer Barad

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Orna Issler

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge