Alexander Nevelsky
Rambam Health Care Campus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Nevelsky.
Journal of Applied Clinical Medical Physics | 2013
Alexander Nevelsky; Nantakan Ieumwananonthachai; Orit Kaidar-Person; Raquel Bar-Deroma; Haitam Nasrallah; Rahamim Ben-Yosef; Abraham Kuten
The purpose of this study was to evaluate the feasibility of hippocampal‐sparing whole‐brain radiotherapy (HS WBRT) using the Elekta Infinity linear accelerator and Monaco treatment planning system (TPS). Ten treatment plans were created for HS‐WBRT to a dose of 30 Gy (10 fractions). RTOG 0933 recommendations were applied for treatment planning. Intensity‐modulated radiotherapy (IMRT) plans for the Elekta Infinity linear accelerator were created using Monaco 3.1 TPS‐based on a nine‐field arrangement and step‐and‐shoot delivery method. Plan evaluation was performed using D2% and D98% for the whole‐brain PTV (defined as whole brain excluding hippocampus avoidance region), D100% and maximum dose to the hippocampus, and maximum dose to optic nerves and chiasm. Homogeneity index (HI) defined as (D2%−D98%)/Dmedian was used to quantify dose homogeneity in the PTV. The whole‐brain PTV D2% mean value was 37.28 Gy (range 36.95–37.49 Gy), and D98% mean value was 25.37 Gy (range 25.40–25.89 Gy). The hippocampus D100% mean value was 8.37 Gy (range 7.48–8.97 Gy) and the hippocampus maximum dose mean value was 14.35 Gy (range 13.48–15.40 Gy). The maximum dose to optic nerves and optic chiasm for all patients did not exceed 37.50 Gy. HI mean value was 0.36 (range 0.34–0.37). Mean number of segments was 105 (range 88–122) and mean number of monitor units was 1724 (range 1622–1914). Gamma evaluation showed that all plans passed 3%, 3 mm criteria with more than 99% of the measured points. These results indicate that Elekta equipment (Elekta Infinity linac and Monaco TPS) can be used for HS WBRT planning according to compliance criteria defined by the RTOG 0933 protocol. PACS numbers: 87.55D, 87.55 –v, 87.55 de
Oncotarget | 2015
Michael Timaner; Rotem Bril; Orit Kaidar-Person; Chen Rachman-Tzemah; Dror Alishekevitz; Ruslana Kotsofruk; Valeria Miller; Alexander Nevelsky; Shahar Daniel; Ziv Raviv; Susan A. Rotenberg; Yuval Shaked
A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis.
Journal of Applied Clinical Medical Physics | 2017
Alexander Nevelsky; Egor Borzov; Shahar Daniel; Raquel Bar-Deroma
&NA; Radiation therapy, in conjunction with surgical implant fixation, is a common combined treatment in cases of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon‐Fiber Reinforced Polyetheretherketone (CFR‐PEEK) material has been recently introduced for production of intramedullary nails and plates. The purpose of this work was to investigate the perturbation effects of the new CFR‐PEEK screws on radiotherapy dose distributions and to evaluate these effects in comparison with traditional titanium screws. The investigation was performed by means of Monte Carlo (MC) simulations for a 6 MV photon beam. The project consisted of two main stages. First, a comparison of measured and MC calculated doses was performed to verify the validity of the MC simulation results for different materials. For this purpose, stainless steel, titanium, and CFR‐PEEK plates of various thicknesses were used for attenuation and backscatter measurements in a solid water phantom. For the same setup, MC dose calculations were performed. Next, MC dose calculations for titanium, CFR‐PEEK screws, and CFR‐PEEK screws with ultrathin titanium coating were performed. For the plates, the results of our MC calculations for all materials were found to be in good agreement with the measurements. This indicates that the MC model can be used for calculation of dose perturbation effects caused by the screws. For the CFR‐PEEK screws, the maximum dose perturbation was less than 5%, compared to more than 30% perturbation for the titanium screws. Ultrathin titanium coating had a negligible effect on the dose distribution. CFR‐PEEK implants have good prospects for use in radiotherapy because of minimal dose alteration and the potential for more accurate treatment planning. This could favorably influence treatment efficiency and decrease possible over‐ and underdose of adjacent tissues. The use of such implants has potential clinical advantages in the treatment of bone metastases.
Journal of Applied Clinical Medical Physics | 2010
Alexander Nevelsky; Zvi Bernstein; Raquel Bar-Deroma; Abraham Kuten; Itzhak Orion
The design concept and dosimetric characteristics of a new applicator system for intraoperative radiation therapy (IORT) are presented in this work. A new hard‐docking commercial system includes polymethylmethacrylate (PMMA) applicators with different diameters and applicator end angles and a set of secondary lead collimators. A telescopic device allows changing of source‐to‐surface distance (SSD). All measurements were performed for 6, 9, 12 and 18 MeV electron energies. Output factors and percentage depth doses (PDD) were measured in a water phantom using a plane‐parallel ion chamber. Isodose contours and radiation leakage were measured using a solid water phantom and radiographic films. The dependence of PDD on SSD was checked for the applicators with the smallest and the biggest diameters. SSD dependence of the output factors was measured. Hardcopies of PDD and isodose contours were prepared to help the team during the procedure on deciding applicator size and energy to be chosen. Applicator output factors are a function of energy, applicator size and applicator type. Dependence of SSD correction factors on applicator size and applicator type was found to be weak. The same SSD correction will be applied for all applicators in use for each energy. The radiation leakage through the applicators is clinically acceptable. The applicator system enables effective collimation of electron beams for IORT. The data presented are sufficient for applicator, energy and monitor unit selection for IORT treatment of a patient. PACS number: 87.00.00, 29.20.‐c
Journal of Applied Clinical Medical Physics | 2018
Egor Borzov; Alexander Nevelsky; Raquel Bar-Deroma; Itzhak Orion
Abstract Purpose Dosimetry of small fields defined by stereotactic cones remains a challenging task. In this work, we report the results of commissioning measurements for the new Elekta stereotactic conical collimator system attached to the Elekta VersaHD linac and present the comparison between the measured and Monte Carlo (MC) calculated data for the 6 MV FFF beam. In addition, relative output factor (ROF) dependence on the stereotactic cone aperture variation was studied and penumbra comparison for small MLC‐based and cone‐based fields was performed. Methods Cones with nominal diameters of 15 mm, 12.5 mm, 10 mm, 7.5 mm, and 5 mm were employed in our study. Percentage depth dose (PDD), off‐axis ratios (OAR), and ROF were measured using a stereotactic field diode (SFD). BEAMnrc code was used for MC simulations. Results MC calculated and measured PDDs for all cones agreed within 1%/0.5 mm, and OAR profiles agreed within 1%/0.5 mm. ROF obtained from the measurements and MC calculations agreed within 2% for all cone sizes. Small‐field correction factors for the SFD detector Kfield,3 × 3(SFD) were derived using MC calculations as a baseline and were found to be 0.982, 0.992, 0.997, 1.015, and 1.017 for the 5, 7.5, 10, 12.5, and 15‐mm cones respectively. The difference in ROF was about 10%, 6%, 3.5%, 3%, 2.5%, and 2% for ±0.3 mm variations in 5, 7.5, 10, 12.5, and 15‐mm cone aperture respectively. In case of single static field, cone‐based collimation produced a sharper penumbra compared to the MLC‐based. Conclusions Accurate MC simulation can be an effective tool for verification of dosimetric measurements of small fields. Due to the very high sensitivity of output factors on the cone diameter, manufacture‐related variations in cone size may lead to considerable variations in dosimetric characteristics of stereotactic cones.
Journal of Applied Clinical Medical Physics | 2017
Alexander Nevelsky; Egor Borzov; Shahar Daniel; Raquel Bar-Deroma
Abstract Purpose Total Skin Electron Irradiation (TSEI) is a complex technique which usually involves the use of large electron fields and the dual‐field approach. In this situation, many electrons scattered from the treatment room floor are produced. However, no investigations of the effect of scattered electrons in TSEI treatments have been reported. The purpose of this work was to study the contribution of floor scattered electrons to skin dose during TSEI treatment using Monte Carlo (MC) simulations. Methods All MC simulations were performed with the EGSnrc code. Influence of beam energy, dual‐field angle, and floor material on the contribution of floor scatter was investigated. Spectrum of the scattered electrons was calculated. Measurements of dose profile were performed in order to verify MC calculations. Results Floor scatter dependency on the floor material was observed (at 20 cm from the floor, scatter contribution was about 21%, 18%, 15%, and 12% for iron, concrete, PVC, and water, respectively). Although total dose profiles exhibited slight variation as functions of beam energy and dual‐field angle, no dependence of the floor scatter contribution on the beam energy or dual‐field angle was found. The spectrum of the scattered electrons was almost uniform between a few hundred KeV to 4 MeV, and then decreased linearly to 6 MeV. Conclusions For the TSEI technique, dose contribution due to the electrons scattered from the room floor may be clinically significant and should be taken into account during design and commissioning phases. MC calculations can be used for this task.
Journal of Applied Clinical Medical Physics | 2016
Alexander Nevelsky; Egor Borzov; Shahar Daniel; Raquel Bar-Deroma
Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc‐based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. The MC‐calculated multiplication factor (B12‐factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12‐factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X‐ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X‐ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.neTotal skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT-based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT-based anthropomorphic phantom. The MC-calculated multiplication factor (B12-factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12-factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X-ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X-ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.ne.
Reports of Practical Oncology & Radiotherapy | 2014
Orit Kaidar-Person; Roxolyana Abdah-Bortnyak; Amnon Amit; Alexander Nevelsky; Alison Berniger; Raquel Bar-Deroma; Rahamim Ben-Yosef; Abraham Kuten
Brachytherapy | 2004
Alexander Nevelsky; Raquel Bar-Deroma; Gökçen Yildrim Çokal; Edward Rosenblatt; Abraham Kuten
Physica Medica | 2017
E. Borzov; Alexander Nevelsky; Raquel Bar-Deroma; I. Orion