Itzhak Orion
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Itzhak Orion.
Radiation Protection Dosimetry | 2016
H. Datz; S. Druzhyna; L. Oster; Itzhak Orion; Y.S. Horowitz
The first results of an in-depth evaluation of the practical potential of common household Israeli salt as a retrospective dosemeter in the event of a nuclear accident or terror attack are presented. Ten brands of salt were investigated with emphasis on four of the bestselling brands that constitute 76 % of the total consumer market. Eight of the ten brands show similar glow curves with two main glow peaks at maximum temperatures of ∼176°C and ∼225°C measured at a heating rate of 1°C s(-1) Chemical analysis of three major brands indicates substantial impurity levels of 200-500 ppm of Ca, K, Mg and S and significant differences of additional ppm trace impurities, which lead to an ∼50 % difference in the TL response of the three major brands. Fading in the dark is in significant but under room light is of the order of 35 % per day. The dose response is linear/supralinear with the threshold of supralinearity at ∼0.01 Gy reaching maximum value of ∼4 at 0.5-1 Gy for two of the major brands. The precision of repeated measurements is ∼10 % (1 SD), but the accuracy of dose assessment under field conditions requires further study.
Radiation Protection Dosimetry | 2014
L. Epstein; J. Koch; T. Riemer; Itzhak Orion; G. Haquin
The average radon concentration in Israeli dwellings was assessed by combining the results of a 2006 radon survey in single-family houses with the results of a 2011 radon survey in apartments of multistorey buildings. Both surveys were based on long-term measurements using CR-39 detectors. The survey in multistorey buildings was intended to assess the influence of recent practices in the local building industry on the radon concentrations. These practices include the use of building materials with higher concentrations of the natural radionuclides in the last 20 y than before, as well as the improvement in sealing techniques over that period. Another practice in place since the early 1990 s is the building of a shielded area in every apartment that is known as an RSS (residential secure space). The RSS is a room built from massive concrete walls, floor and ceiling that can be hermetically sealed and is intended to protect its residents from a missile attack. The influence of the above-mentioned features on radon concentrations was estimated by dividing the participating apartments into two groups: apartments in buildings >20 y, built using building materials with low concentrations of the natural radionuclides, regular sealing and without an RSS and apartments in buildings newer than 10 y, built using building materials with higher concentrations of the natural radionuclides, improved sealing and including an RSS. It was found that the average radon concentration in apartments in new buildings was significantly higher than in old buildings and the average radon concentration in single-family houses was significantly higher than in apartments in multistorey buildings. Doses due to indoor radon were estimated on the basis of the updated information included in the 2009 International Commission on Radiological Protection statement on radon.
Radiation Measurements | 2013
L. Oster; S. Druzhyna; Itzhak Orion; Y.S. Horowitz
We have previously demonstrated that the increased response of optically stimulated luminescence (OSL) compared to thermoluminescence (TL) following high ionization density (HID) alpha irradiation is naturally explained via the identification of OSL with the ”two-hit” F2 or F\(_3^+\) center, whereas the major component of composite TL glow peak 5 is believed to arise from a ”one-hit” complex defect. This discovery suggested that near-total discrimination between HID radiation and low ionization density (LID) radiation using combined OSL and TL measurements may have significant potential in mixed-field radiation dosimetry In this paper we discuss and compare the potential application of combined OSL/TL measurements using 6LiF:Mg,Ti (TLD-600) or 7LiF:Mg,Ti (TLD-700) and TLD-100 natural isotopic composition) detectors.
Radiation Oncology | 2014
Jon Feldman; Limor Appelbaum; Mordechay Sela; Ninel Voskoboinik; Sarit Kadouri; Jeffrey Weinberger; Itzhak Orion; Amichay Meirovitz
Purpose/ObjectivesThe purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity.Materials and methodsSeven patients with T2 lip cancer treated with a “sandwich” technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the “sandwich” technique to “classic” – interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue “hot spots” and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique.ResultsThe seven patients (ages 36–81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free.The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1–47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant.ConclusionThe CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality.
Journal of Applied Clinical Medical Physics | 2010
Alexander Nevelsky; Zvi Bernstein; Raquel Bar-Deroma; Abraham Kuten; Itzhak Orion
The design concept and dosimetric characteristics of a new applicator system for intraoperative radiation therapy (IORT) are presented in this work. A new hard‐docking commercial system includes polymethylmethacrylate (PMMA) applicators with different diameters and applicator end angles and a set of secondary lead collimators. A telescopic device allows changing of source‐to‐surface distance (SSD). All measurements were performed for 6, 9, 12 and 18 MeV electron energies. Output factors and percentage depth doses (PDD) were measured in a water phantom using a plane‐parallel ion chamber. Isodose contours and radiation leakage were measured using a solid water phantom and radiographic films. The dependence of PDD on SSD was checked for the applicators with the smallest and the biggest diameters. SSD dependence of the output factors was measured. Hardcopies of PDD and isodose contours were prepared to help the team during the procedure on deciding applicator size and energy to be chosen. Applicator output factors are a function of energy, applicator size and applicator type. Dependence of SSD correction factors on applicator size and applicator type was found to be weak. The same SSD correction will be applied for all applicators in use for each energy. The radiation leakage through the applicators is clinically acceptable. The applicator system enables effective collimation of electron beams for IORT. The data presented are sufficient for applicator, energy and monitor unit selection for IORT treatment of a patient. PACS number: 87.00.00, 29.20.‐c
arXiv: Nuclear Experiment | 2004
D. Vartsky; Mark B. Goldberg; Gideon Engler; Asher Shor; Aharon Goldschmidt; Gennady Feldman; D. Bar; Itzhak Orion; Lucian Wielopolski
Gamma-Ray Resonant Absorption (GRA) is an automatic-decision radiographic screening technique that combines high radiation penetration with very good sensitivity and specificity to nitrogenous explosives. The method is particularly well-suited to inspection of large, massive objects (since the resonant γ-ray probe is at 9.17 MeV) such as aviation and marine containers, heavy vehicles and railroad cars. Two kinds of γ-ray detectors have been employed to date in GRA systems: 1) Resonant-response nitrogen-rich liquid scintillators and 2) BGO detectors. This paper analyses and compares the response of these detector-types to the resonant radiation, in terms of single-pixel figures of merit. The latter are sensitive not only to detector response, but also to accelerator-beam quality, via the properties of the nuclear reaction that produces the resonant-γ-rays. Generally, resonant detectors give rise to much higher nitrogen-contrast sensitivity in the radiographic image than their non-resonant detector counterparts and furthermore, do not require proton beams of high energy-resolution. By comparison, the non-resonant detectors have higher γ-detection efficiency, but their contrast sensitivity is very sensitive to the quality of the accelerator beam. Implications of these detector/accelerator characteristics for eventual GRA field systems are discussed.
Journal of Applied Clinical Medical Physics | 2018
Egor Borzov; Alexander Nevelsky; Raquel Bar-Deroma; Itzhak Orion
Abstract Purpose Dosimetry of small fields defined by stereotactic cones remains a challenging task. In this work, we report the results of commissioning measurements for the new Elekta stereotactic conical collimator system attached to the Elekta VersaHD linac and present the comparison between the measured and Monte Carlo (MC) calculated data for the 6 MV FFF beam. In addition, relative output factor (ROF) dependence on the stereotactic cone aperture variation was studied and penumbra comparison for small MLC‐based and cone‐based fields was performed. Methods Cones with nominal diameters of 15 mm, 12.5 mm, 10 mm, 7.5 mm, and 5 mm were employed in our study. Percentage depth dose (PDD), off‐axis ratios (OAR), and ROF were measured using a stereotactic field diode (SFD). BEAMnrc code was used for MC simulations. Results MC calculated and measured PDDs for all cones agreed within 1%/0.5 mm, and OAR profiles agreed within 1%/0.5 mm. ROF obtained from the measurements and MC calculations agreed within 2% for all cone sizes. Small‐field correction factors for the SFD detector Kfield,3 × 3(SFD) were derived using MC calculations as a baseline and were found to be 0.982, 0.992, 0.997, 1.015, and 1.017 for the 5, 7.5, 10, 12.5, and 15‐mm cones respectively. The difference in ROF was about 10%, 6%, 3.5%, 3%, 2.5%, and 2% for ±0.3 mm variations in 5, 7.5, 10, 12.5, and 15‐mm cone aperture respectively. In case of single static field, cone‐based collimation produced a sharper penumbra compared to the MLC‐based. Conclusions Accurate MC simulation can be an effective tool for verification of dosimetric measurements of small fields. Due to the very high sensitivity of output factors on the cone diameter, manufacture‐related variations in cone size may lead to considerable variations in dosimetric characteristics of stereotactic cones.
Radiation Research | 2018
Rotem Daudee; Rafi Gonen; U. German; Itzhak Orion; Zeev B. Alfassi; Esther Priel
In radiation exposure scenarios where physical dosimetry is absent or inefficient, dose estimation must rely on biological markers. A reliable biomarker is of utmost importance in correlating biological system changes with radiation exposure. Human DNA topoisomerase ІB (topo І) is a ubiquitous nuclear enzyme, which is involved in essential cellular processes, including transcription, DNA replication and DNA repair, and is the target of anti-cancer drugs. It has been shown that the cellular activity of this enzyme is significantly sensitive to various DNA lesions, including radiation-induced DNA damages. Therefore, we investigated the potential of topo I as a biomarker of radiation exposure and dose. We examined the effect of exposure of different human cells to beta, X-ray and gamma radiation on the cellular catalytic activity of topo I. The results demonstrate a significant reduction in the DNA relaxation activity of topo I after irradiation and the level of the reduction was correlated with radiation dose. In normal human peripheral blood lymphocytes, exposure for 3 h to an integral dose of 0.065 mGy from tritium reduced the enzyme activity to less than 25%. In MG-63 osteoblast-like cells and in human pulmonary fibroblast (HPF) cells exposed to gamma radiation from a 60Co source (up to 2 Gy) or to X rays (up to 2.8 Gy), a significant decrease in topo I catalytic activity was also observed. We observed that the enzyme-protein level was not altered but was partially posttranslational modified by ADP-ribosylation of the enzyme protein that is known to reduce topo I activity. The results of this study suggest that the decrease in the cellular topo I catalytic activity after low-dose exposure to different radiation types may be considered as a novel biomarker of ionizing radiation exposure and dose. For this purpose, a suitable ELISA-based method for large-scale analysis of radiation-induced topo I modification is under development.
Radiation Protection Dosimetry | 2017
L. Epstein; J. Koch; T. Riemer; G. Haquin; Itzhak Orion
The radiation dose to the population of Israel due to exposure to natural sources of ionizing radiation was assessed. The main contributor to the dose is radon that accounts for 60% of the exposure to natural sources. The dose due to radon inhalation was assessed by combining the results of a radon survey in single-family houses with the results of a survey in apartments in multi-storey buildings. The average annual dose due to radon inhalation was found to be 1.2 mSv. The dose rate due to exposure to cosmic radiation was assessed using a code that calculates the dose rate at different heights above sea level, taking into account the solar cycle. The annual dose was calculated based on the fraction of time spent indoors and the attenuation provided by buildings and was found to be 0.2 mSv. The annual dose due to external exposure to the terrestrial radionuclides was similarly assessed. The indoor dose rate was calculated using a model that takes into account the concentrations of the natural radionuclides in building materials, the density and the thickness of the walls. The dose rate outdoors was calculated based on the concentrations of the natural radionuclides in different geological units in Israel as measured in an aerial survey and measurements above ground. The annual dose was found to be 0.2 mSv. Doses due to internal exposure other than exposure to radon were also calculated and were found to be 0.4 mSv. The overall annual exposure of the population of Israel to natural sources of ionizing radiation is therefore 2 mSv and ranges between 1.7 and 2.7 mSv.
Applied Radiation and Isotopes | 2017
Mati Sheinfeld; Samuel Levinson; Itzhak Orion
Building materials can contain elevated levels of naturally occurring radioactive materials (NORM), in particular Ra-226, Th-232 and K-40. Safety standards, such as IAEA Safety Standards Series No. GSR Part 3, dictate particular activities that must be fulfilled to ensure adequate safety. Traditional methods include spectral analysis of material samples measured by a HPGe detector then processed to calculate the specific activity of the NORM in Bq/Kg with 1.96 σ uncertainty. This paper describes a new method that pre-processes the raw spectrum then feeds the result into a set of pre-trained neural networks, thus generating the required specific radionuclide activity as well as the 1.96 σ uncertainty.