Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Parsadanian is active.

Publication


Featured researches published by Alexander Parsadanian.


Journal of Clinical Investigation | 2006

GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3k/Akt pathway

Mallappa Anitha; Chetan Gondha; Roy L. Sutliff; Alexander Parsadanian; Simon M. Mwangi; Shanthi V. Sitaraman; Shanthi Srinivasan

Diabetes can result in loss of enteric neurons and subsequent gastrointestinal complications. The mechanism of enteric neuronal loss in diabetes is not known. We examined the effects of hyperglycemia on enteric neuronal survival and the effects of glial cell line-derived neurotrophic factor (GDNF) on modulating this survival. Exposure of primary enteric neurons to 20 mM glucose (hyperglycemia) for 24 hours resulted in a significant increase in apoptosis compared with 5 mM glucose (normoglycemia). Exposure to 20 mM glucose resulted in decreased Akt phosphorylation and enhanced nuclear translocation of forkhead box O3a (FOXO3a). Treatment of enteric neurons with GDNF ameliorated these changes. In streptozotocin-induced diabetic mice, there was evidence of myenteric neuronal apoptosis and reduced Akt phosphorylation. Diabetic mice had loss of NADPH diaphorase-stained myenteric neurons, delayed gastric emptying, and increased intestinal transit time. The pathophysiological effects of hyperglycemia (apoptosis, reduced Akt phosphorylation, loss of inhibitory neurons, motility changes) were reversed in diabetic glial fibrillary acidic protein-GDNF (GFAP-GDNF) Tg mice. In conclusion, we demonstrate that hyperglycemia induces neuronal loss through a reduction in Akt-mediated survival signaling and that these effects are reversed by GDNF. GDNF may be a potential therapeutic target for the gastrointestinal motility disorders related to diabetes.


The Journal of Neuroscience | 1997

Analysis of the mechanism of loss of trophic factor dependence associated with neuronal maturation: a phenotype indistinguishable from Bax deletion.

Rachael M. Easton; Thomas L. Deckwerth; Alexander Parsadanian; Eugene M. Johnson

During development, sympathetic neurons are critically dependent on nerve growth factor (NGF) for survival. Neurons isolated from the superior cervical ganglia (SCG) of embryonic rodents and maintained for 1 week in vitro undergo programmed cell death in response to NGF deprivation. As the cells mature in vitro and in vivo, however, these neurons develop a resistance to NGF deprivation and become much less acutely dependent on NGF for survival. Using an in vitro model of neuronal maturation, we confirmed that SCG neurons maintained in culture for 3–4 weeks did not experience a dramatic loss in viability after NGF removal, yet they did undergo the initial biochemical and genetic changes elicited by NGF deprivation of young neurons. NGF deprivation of mature neurons produced rapid decreases in glucose uptake and protein and RNA synthesis rates, increased phosphorylation of c-Jun, and an increase in c-jun mRNA. Mature neurons, however, experienced a block in the cell death program before the final stages of the pathway activated in young neurons, which includes the induction of c-fos mRNA and characteristic apoptotic nuclear changes. This maturation-induced block was indistinguishable by these criteria from the block produced by Baxdeficiency. Expression of Bax in mature neurons restored the apoptotic pathway, such that after NGF removal,Bax-overexpressing mature neurons resumed the apoptotic program, including the induction of c-Fos and passage through a caspase checkpoint. Thus, a block in the apoptotic program at or near the BAX checkpoint accounts for the decreased dependence of mature neurons on neurotrophic factor to maintain survival.


Experimental Neurology | 2007

Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS

Wen Li; Danielle Brakefield; Yanchun Pan; Daniel A. Hunter; Terence M. Myckatyn; Alexander Parsadanian

Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for motoneurons (MNs), and is considered a potential agent for the treatment of amyotrophic lateral sclerosis (ALS) and other MN diseases. The effectiveness of GDNF may depend significantly upon its route of delivery to MNs. In this study we tested the neuroprotective effects of target-derived and centrally derived GDNF in the G93A-SOD1 mouse model of ALS using a transgenic approach. We found that overexpression of GDNF in the skeletal muscle (Myo-GDNF mice) significantly delayed the onset of disease and increased the life span of G93A-SOD1 mice by 17 days. The duration of disease also increased by 8.5 days, indicating that GDNF slowed down the progression of disease. Locomotor performance in Myo-GDNF/G93A-SOD1 mice was also significantly improved. The behavioral improvement correlated well with anatomical and histological data. We demonstrated that muscle-derived GDNF resulted in increased survival of spinal MNs, and twice as many MNs survived in end-stage double transgenic mice compared to end-stage G93A-SOD1 mice. Muscle-derived GDNF also had profound effects on muscle innervation and axonal degeneration. Significantly higher numbers of completely or partially innervated NMJs and large caliber myelinated axons were found in double transgenic mice. In contrast, we demonstrated that overexpression of GDNF in astrocytes in the CNS (GFAP-GDNF mice) failed to demonstrate any neuroprotective effects in G93A-SOD1 mice both on behavioral and histological levels. These data indicate that retrograde transport and signaling of GDNF is more physiological and effective for ALS treatment than anterogradely transported GDNF.


Experimental Neurology | 2004

Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long-term survival following axotomy

Zhongqiu Zhao; Sana Alam; Ronald W. Oppenheim; David Prevette; Ariana Evenson; Alexander Parsadanian

To study the role of one of the most potent motoneuron (MN) survival factors, glial cell line-derived neurotrophic factor (GDNF) derived from the CNS, we generated transgenic animals overexpressing GDNF under the control of an astrocyte-specific GFAP promoter. In situ hybridization revealed that GDNF was expressed at high levels in astrocytes throughout the brain and spinal cord. We analyzed the effects of CNS-derived GDNF on MN survival during the period of programmed cell death (PCD) and after nerve axotomy. In GFAP-GDNF mice at E15, E18, and P1, the survival of brachial MNs was increased on average by 30%, lumbar MNs by 20%, and thoracic MNs at P1 by 33%. GDNF also prevented MN PCD in several cranial motor nuclei. We demonstrated for the first time that the number of MNs in the mouse abducens nucleus was also increased by 40%, thus extending known MN populations that are responsive to GDNF. Next, we tested if GDNF could support complete and relatively long-term survival of MNs following neonatal facial nerve axotomy. We found that virtually all MNs (91%) in GFAP-GDNF mice survived for up to 18 weeks post-axotomy. This is the longest GDNF-mediated survival of neonatal MNs reported following axotomy. Most of surviving MNs were not atrophic, and MN-specific ChAT and neurofilament immunoreactivity (IR) were preserved. Furthermore, GDNF attenuated axotomy-induced astroglial activation. These data demonstrate that overexpression of GDNF in the CNS has very profound effects on MN survival both during the PCD period and after neuronal injury. GFAP-GDNF mice will be valuable to study the effects of CNS-derived GDNF in mouse models of MN degenerative diseases and axonal regeneration in vivo.


The Journal of Neuroscience | 2010

The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function.

Hongtao Wang; Inna Hughes; William Planer; Alexander Parsadanian; John R. Grider; Bhupinder P.S. Vohra; Cynthia R. Keller-Peck; Robert O. Heuckeroth

Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.


Experimental Neurology | 2007

Reinnervation of the tibialis anterior following sciatic nerve crush injury: A confocal microscopic study in transgenic mice

Christina K. Magill; Alice Tong; David H. Kawamura; Ayato Hayashi; Daniel A. Hunter; Alexander Parsadanian; Susan E. Mackinnon; Terence M. Myckatyn

Transgenic mice whose axons and Schwann cells express fluorescent chromophores enable new imaging techniques and augment concepts in developmental neurobiology. The utility of these tools in the study of traumatic nerve injury depends on employing nerve models that are amenable to microsurgical manipulation and gauging functional recovery. Motor recovery from sciatic nerve crush injury is studied here by evaluating motor endplates of the tibialis anterior muscle, which is innervated by the deep peroneal branch of the sciatic nerve. Following sciatic nerve crush, the deep surface of the tibialis anterior muscle is examined using whole mount confocal microscopy, and reinnervation is characterized by imaging fluorescent axons or Schwann cells (SCs). One week following sciatic crush injury, 100% of motor endplates are denervated with partial reinnervation at 2 weeks, hyperinnervation at 3 and 4 weeks, and restoration of a 1:1 axon to motor endplate relationship 6 weeks after injury. Walking track analysis reveals progressive recovery of sciatic nerve function by 6 weeks. SCs reveal reduced S100 expression within 2 weeks of denervation, correlating with regression to a more immature phenotype. Reinnervation of SCs restores S100 expression and a fully differentiated phenotype. Following denervation, there is altered morphology of circumscribed terminal Schwann cells demonstrating extensive process formation between adjacent motor endplates. The thin, uniformly innervated tibialis anterior muscle is well suited for studying motor reinnervation following sciatic nerve injury. Confocal microscopy may be performed coincident with other techniques of assessing nerve regeneration and functional recovery.


Experimental Neurology | 2008

Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons

Krikor Dikranian; R. Cohen; C.L. Mac Donald; Yanchun Pan; Danielle Brakefield; Philip V. Bayly; Alexander Parsadanian

The immature brain in the first several years of childhood is very vulnerable to trauma. Traumatic brain injury (TBI) during this critical period often leads to neuropathological and cognitive impairment. Previous experimental studies in rodent models of infant TBI were mostly concentrated on neuronal degeneration, while axonal injury and its relationship to cell death have attracted much less attention. To address this, we developed a closed controlled head injury model in infant (P7) mice and characterized the temporospatial pattern of axonal degeneration and neuronal cell death in the brain following mild injury. Using amyloid precursor protein (APP) as marker of axonal injury we found that mild head trauma causes robust axonal degeneration in the cingulum/external capsule as early as 30 min post-impact. These levels of axonal injury persisted throughout a 24 h period, but significantly declined by 48 h. During the first 24 h injured axons underwent significant and rapid pathomorphological changes. Initial small axonal swellings evolved into larger spheroids and club-like swellings indicating the early disconnection of axons. Ultrastructural analysis revealed compaction of organelles, axolemmal and cytoskeletal defects. Axonal degeneration was followed by profound apoptotic cell death in the posterior cingulate and retrosplenial cortex and anterior thalamus which peaked between 16 and 24 h post-injury. At early stages post-injury no evidence of excitotoxic neuronal death at the impact site was found. At 48 h apoptotic cell death was reduced and paralleled with the reduction in the number of APP-labeled axonal profiles. Our data suggest that early degenerative response to injury in axons of the cingulum and external capsule may cause disconnection between cortical and thalamic neurons, and lead to their delayed apoptotic death.


Experimental Neurology | 2007

A double-transgenic mouse used to track migrating Schwann cells and regenerating axons following engraftment of injured nerves

Ayato Hayashi; Jason W. Koob; Daniel Z. Liu; Alice Y. Tong; Daniel A. Hunter; Alexander Parsadanian; Susan E. Mackinnon; Terence M. Myckatyn

We propose that double-transgenic thy1-CFP(23)/S100-GFP mice whose Schwann cells constitutively express green fluorescent protein (GFP) and axons express cyan fluorescent protein (CFP) can be used to serially evaluate the temporal relationship between nerve regeneration and Schwann cell migration through acellular nerve grafts. Thy1-CFP(23)/S100-GFP and S100-GFP mice received non-fluorescing cold preserved nerve allografts from immunologically disparate donors. In vivo fluorescent imaging of these grafts was then performed at multiple points. The transected sciatic nerve was reconstructed with a 1-cm nerve allograft harvested from a Balb-C mouse and acellularized via 7 weeks of cold preservation prior to transplantation. The presence of regenerated axons and migrating Schwann cells was confirmed with confocal and electron microscopy on fixed tissue. Schwann cells migrated into the acellular graft (163+/-15 intensity units) from both proximal and distal stumps, and bridged the whole graft within 10 days (388+/-107 intensity units in the central 4-6 mm segment). Nerve regeneration lagged behind Schwann cell migration with 5 or 6 axons imaged traversing the proximal 4 mm of the graft under confocal microcopy within 10 days, and up to 21 labeled axons crossing the distal coaptation site by 15 days. Corroborative electron and light microscopy 5 mm into the graft demonstrated relatively narrow diameter myelinated (431+/-31) and unmyelinated (64+/-9) axons by 28 but not 10 days. Live imaging of the double-transgenic thy1-CFP(23)/S100-GFP murine line enabled serial assessment of Schwann cell-axonal relationships in traumatic nerve injuries reconstructed with acellular nerve allografts.


Gastroenterology | 2008

Glial Cell Line-Derived Neurotrophic Factor Increases β-Cell Mass and Improves Glucose Tolerance

Simon M. Mwangi; Mallappa Anitha; Chaithanya Mallikarjun; Xiaokun Ding; Manami Hara; Alexander Parsadanian; Christian P. Larsen; Peter M. Thulé; Shanthi V. Sitaraman; Frank A. Anania; Shanthi Srinivasan

BACKGROUND & AIMS Pancreatic beta-cell mass increases in response to increased demand for insulin, but the factors involved are largely unknown. Glial cell line-derived neurotrophic factor (GDNF) is a growth factor that plays a role in the development and survival of the enteric nervous system. We investigated the role of GDNF in regulating beta-cell survival. METHODS Studies were performed using the beta-TC-6 pancreatic beta-cell line, isolated mouse pancreatic beta cells, and in vivo in transgenic mice that overexpress GDNF in pancreatic glia. GDNF receptor family alpha1 and c-Ret receptor expression were assessed by reverse-transcription polymerase chain reaction and immunofluorescence microscopy. Apoptosis was evaluated by assessing caspase-3 cleavage. Phosphoinositol-3-kinase signaling pathway was analyzed by Akt phosphorylation. Glucose homeostasis was assessed by performing intraperitoneal glucose tolerance tests. Insulin sensitivity was assessed using intraperitoneal injection of insulin. RESULTS We demonstrate the presence of receptors for GDNF, GFRalpha1, and c-Ret on beta cells. GDNF promoted beta-cell survival and proliferation and protected them from thapsigargin-induced apoptosis (P<.0001) in vitro. Exposure of beta-cells to GDNF also resulted in phosphorylation of Akt and GSK3beta. Transgenic mice that overexpress GDNF in glia exhibit increased beta-cell mass, proliferation, and insulin content. No differences in insulin sensitivity and c-peptide levels were noted. Compared with wild-type mice, GDNF-transgenic mice have significantly lower blood glucose levels and improved glucose tolerance (P<.01). GDNF-transgenic mice are resistant to streptozotocin-induced beta-cell loss (P<.001) and subsequent hyperglycemia. CONCLUSIONS We demonstrate that over expression of GDNF in pancreatic glia improves glucose tolerance and that GDNF may be a therapeutic target for improving beta-cell mass.


Journal of Neurosurgery | 2010

The differential effects of pathway- versus target-derived glial cell line–derived neurotrophic factor on peripheral nerve regeneration

Christina K. Magill; Amy M. Moore; Ying Yan; Alice Y. Tong; Matthew R. MacEwan; Andrew Yee; Ayato Hayashi; Daniel A. Hunter; Wilson Z. Ray; Philip J. Johnson; Alexander Parsadanian; Terence M. Myckatyn; Susan E. Mackinnon

OBJECT Glial cell line-derived neurotrophic factor (GDNF) has potent survival effects on central and peripheral nerve populations. The authors examined the differential effects of GDNF following either a sciatic nerve crush injury in mice that overexpressed GDNF in the central or peripheral nervous systems (glial fibrillary acidic protein [GFAP]-GDNF) or in the muscle target (Myo-GDNF). METHODS Adult mice (GFAP-GDNF, Myo-GDNF, or wild-type [WT] animals) underwent sciatic nerve crush and were evaluated using histomorphometry and muscle force and power testing. Uninjured WT animals served as controls. RESULTS In the sciatic nerve crush, the Myo-GDNF mice demonstrated a higher number of nerve fibers, fiber density, and nerve percentage (p < 0.05) at 2 weeks. The early regenerative response did not result in superlative functional recovery. At 3 weeks, GFAP-GDNF animals exhibit fewer nerve fibers, decreased fiber width, and decreased nerve percentage compared with WT and Myo-GDNF mice (p < 0.05). By 6 weeks, there were no significant differences between groups. CONCLUSIONS Peripheral delivery of GDNF resulted in earlier regeneration following sciatic nerve crush injuries than that with central GDNF delivery. Treatment with neurotrophic factors such as GDNF may offer new possibilities for the treatment of peripheral nerve injury.

Collaboration


Dive into the Alexander Parsadanian's collaboration.

Top Co-Authors

Avatar

Terence M. Myckatyn

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Hunter

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Susan E. Mackinnon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ayato Hayashi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Danielle Brakefield

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Tong

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alice Y. Tong

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge