Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shanthi Srinivasan is active.

Publication


Featured researches published by Shanthi Srinivasan.


Science | 2010

Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5

Matam Vijay-Kumar; Jesse D. Aitken; Frederic A. Carvalho; Tyler C. Cullender; Simon M. Mwangi; Shanthi Srinivasan; Shanthi V. Sitaraman; Rob Knight; Ruth E. Ley; Andrew T. Gewirtz

Debugging Metabolic Disease Obesity, now officially recognized as an epidemic in many developed nations, is a key component of “metabolic syndrome,” an array of metabolic disturbances that increase an individuals risk of developing diabetes and heart disease. The rise in obesity rates has been largely attributed to the growing imbalance between food intake and energy expenditure, but recent provocative work has suggested a possible link between obesity and the composition of microbes residing within the gut. Vijay-Kumar et al. (p. 228, published online 4 March; see the Perspective by Sandoval and Seeley) now find that mutant mice deficient in a component of the innate immune system (which defends the body against microbial pathogens) develop hallmark features of metabolic syndrome, accompanied by changes in gut microbiota. Notably, transfer of gut microbiota from the mutant mice to wild-type mice conferred several features of metabolic syndrome to the recipients. Thus, the development of metabolic syndrome may indeed be influenced by gut microbes that are regulated by the innate immune system. The innate immune system may promote metabolic health through effects on gut microbes. Metabolic syndrome is a group of obesity-related metabolic abnormalities that increase an individual’s risk of developing type 2 diabetes and cardiovascular disease. Here, we show that mice genetically deficient in Toll-like receptor 5 (TLR5), a component of the innate immune system that is expressed in the gut mucosa and that helps defend against infection, exhibit hyperphagia and develop hallmark features of metabolic syndrome, including hyperlipidemia, hypertension, insulin resistance, and increased adiposity. These metabolic changes correlated with changes in the composition of the gut microbiota, and transfer of the gut microbiota from TLR5-deficient mice to wild-type germ-free mice conferred many features of metabolic syndrome to the recipients. Food restriction prevented obesity, but not insulin resistance, in the TLR5-deficient mice. These results support the emerging view that the gut microbiota contributes to metabolic disease and suggest that malfunction of the innate immune system may promote the development of metabolic syndrome.


Nature | 2015

Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome

Benoit Chassaing; Omry Koren; Julia K. Goodrich; Angela C. Poole; Shanthi Srinivasan; Ruth E. Ley; Andrew T. Gewirtz

The intestinal tract is inhabited by a large and diverse community of microbes collectively referred to as the gut microbiota. While the gut microbiota provides important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota–host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multi-layered mucus structures that cover the intestinal surface, thereby allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine. Thus, agents that disrupt mucus–bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro, might be promoting the increase in inflammatory bowel disease observed since the mid-twentieth century. Here we report that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in wild-type hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition and increased pro-inflammatory potential. Use of germ-free mice and faecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host–microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects. Moreover, they suggest that the broad use of emulsifying agents might be contributing to an increased societal incidence of obesity/metabolic syndrome and other chronic inflammatory diseases.


American Journal of Pathology | 2005

The roles of leptin and adiponectin : A novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology

Xiaokun Ding; Neeraj K. Saxena; Songbai Lin; Amin Xu; Shanthi Srinivasan; Frank A. Anania

Although leptin is a key adipokine promoting liver fibrosis, adiponectin may prevent liver injury. To determine the role of these adipokines in liver fibrosis and to understand their expression in vivo, fa/fa rats and their lean littermates were subjected to bile duct ligation (BDL). Histomorphometry for collagen and alpha-smooth muscle actin (alpha-SMA) revealed that lean rats, but not fa/fa littermates, had significant fibrosis with abundant hepatic stellate cell (HSC) activation. The lean-BDL rats had significantly higher leptin concentrations in the hepatic vein than lean sham-operated, fa/fa BDL, or fa/fa sham-operated rats. Co-localization of leptin and alpha-SMA in activated HSCs was observed by immunohistochemistry. Real-time reverse transcriptase-polymerase chain reaction and Western blot analysis confirmed the presence of leptin and alpha-SMA in activated, but not quiescent, HSCs, whereas only quiescent HSCs synthesized adiponectin mRNA and protein. Adiponectin overexpression in activated HSCs reduced proliferation, augmented apoptosis, and reduced expression of alpha-SMA and proliferating cell nuclear antigen. Adiponectin receptors (AdipoR1 and AdipoR2) were detected in both activated and quiescent HSCs, but only activated HSCs produced significant apoptosis after treatment with either globular or full-length adiponectin. Adiponectin may act to reverse HSC activation, maintain HSC quiescence, or significantly, may have important therapeutic implications in liver fibrosis.


Journal of Clinical Investigation | 2006

GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3k/Akt pathway

Mallappa Anitha; Chetan Gondha; Roy L. Sutliff; Alexander Parsadanian; Simon M. Mwangi; Shanthi V. Sitaraman; Shanthi Srinivasan

Diabetes can result in loss of enteric neurons and subsequent gastrointestinal complications. The mechanism of enteric neuronal loss in diabetes is not known. We examined the effects of hyperglycemia on enteric neuronal survival and the effects of glial cell line-derived neurotrophic factor (GDNF) on modulating this survival. Exposure of primary enteric neurons to 20 mM glucose (hyperglycemia) for 24 hours resulted in a significant increase in apoptosis compared with 5 mM glucose (normoglycemia). Exposure to 20 mM glucose resulted in decreased Akt phosphorylation and enhanced nuclear translocation of forkhead box O3a (FOXO3a). Treatment of enteric neurons with GDNF ameliorated these changes. In streptozotocin-induced diabetic mice, there was evidence of myenteric neuronal apoptosis and reduced Akt phosphorylation. Diabetic mice had loss of NADPH diaphorase-stained myenteric neurons, delayed gastric emptying, and increased intestinal transit time. The pathophysiological effects of hyperglycemia (apoptosis, reduced Akt phosphorylation, loss of inhibitory neurons, motility changes) were reversed in diabetic glial fibrillary acidic protein-GDNF (GFAP-GDNF) Tg mice. In conclusion, we demonstrate that hyperglycemia induces neuronal loss through a reduction in Akt-mediated survival signaling and that these effects are reversed by GDNF. GDNF may be a potential therapeutic target for the gastrointestinal motility disorders related to diabetes.


The FASEB Journal | 2004

Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation

Neeraj K. Saxena; Mark A. Titus; Xiaokun Ding; Shanthi Srinivasan; Shanthi V. Sitaraman; Frank A. Anania

A key feature in the molecular pathogenesis of liver fibrosis requires maintenance of the activated hepatic stellate cell (HSC) phenotype by both proliferation and inhibition of apoptosis. We provide evidence that leptin is a potent HSC mitogen and dramatically inhibits stellate cell apoptosis. Leptin proved to be as potent an HSC mitogen as platelet‐derived growth factor (PDGF) as assessed by bromodeoxyuridine (BrdU) incorporation in isolated primary HSCs; data using fluorescent propidium iodide (PI) uptake revealed that leptin, like PDGF, increased HSC populations in the S‐ and G2/M‐phases of the cell cycle. Leptin resulted in a robust increase in cyclin D1 expression. Using the chemical inhibitor of Janus kinase 2 (Jak2) activity, AG 490, and overexpression of the suppressor of cytokine signaling 3 (SOCS‐3), we show that blockade of leptin receptor (Ob‐Rb) phosphorylation blocks leptin‐induced HSC proliferation. Leptin‐associated phosphorylation of both extracellular regulated kinase (p44/p42, Erk) and Akt is also prohibited. Further, the PI‐3 kinase inhibitor LY294002 and MAPK inhibitor PD98059 were found to significantly reduce leptin‐induced HSC proliferation, thereby indicating that leptin induced HSC proliferation is Akt‐ and Erk‐dependent. Akt was also protective against HSC apoptosis. Leptin abolished both cycloheximide‐induced and tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL)‐induced apoptosis, demonstrated by reduced caspase‐3 activity, HSC‐TUNEL staining, and DNA fragmentation. We conclude that leptin acts as a direct hepatic stellate cell survival agonist. Importantly, we have demonstrated that leptin‐induced HSC proliferation and survival by Ob‐Rb phosphorylation are both Erk‐ and Akt‐dependent.


Gastroenterology | 2012

Gut Microbial Products Regulate Murine Gastrointestinal Motility via Toll-Like Receptor 4 Signaling

Mallappa Anitha; Matam Vijay–Kumar; Shanthi V. Sitaraman; Andrew T. Gewirtz; Shanthi Srinivasan

BACKGROUND & AIMS Altered gastrointestinal motility is associated with significant morbidity and health care costs. Toll-like receptors (TLR) regulate intestinal homeostasis. We examined the roles of TLR4 signaling in survival of enteric neurons and gastrointestinal motility. METHODS We assessed changes in intestinal motility by assessing stool frequency, bead expulsion, and isometric muscle recordings of colonic longitudinal muscle strips from mice that do not express TLR4 (Tlr4(Lps-d) or TLR4(-/-)) or Myd88 (Myd88(-/-)), in wild-type germ-free mice or wild-type mice depleted of the microbiota, and in mice with neural crest-specific deletion of Myd88 (Wnt1Cre(+/-)/Myd88(fl/fl)). We studied the effects of the TLR4 agonist lipopolysaccharide (LPS) on survival of cultured, immortalized fetal enteric neurons and enteric neuronal cells isolated from wild-type and Tlr4(Lps-d) mice at embryonic day 13.5. RESULTS There was a significant delay in gastrointestinal motility and reduced numbers of nitrergic neurons in TLR4(Lps-d), TLR4(-/-), and Myd88(-/-) mice compared with wild-type mice. A similar phenotype was observed in germ-free mice, mice depleted of intestinal microbiota, and Wnt1Cre(+/-)/Myd88(fl/fl) mice. Incubation of enteric neuronal cells with LPS led to activation of the transcription factor nuclear factor (NF)-κB and increased cell survival. CONCLUSIONS Interactions between enteric neurons and microbes increases neuron survival and gastrointestinal motility in mice. LPS activation of TLR4 and NF-κB appears to promote survival of enteric neurons. Factors that regulate TLR4 signaling in neurons might be developed to alter gastrointestinal motility.


Experimental Neurology | 2007

Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson's disease

Grant T. Anderson; Ali Reza Noorian; Georgia Taylor; Mallappa Anitha; Shanthi Srinivasan; James G. Greene

Gastrointestinal (GI) dysfunction is the most common non-motor symptom of Parkinsons disease (PD). Symptoms of GI dysmotility include early satiety and nausea from delayed gastric emptying, bloating from poor small bowel coordination, and constipation and defecatory dysfunction from impaired colonic transit. Understanding the pathophysiology and treatment of these symptoms in PD patients has been hampered by the lack of investigation into GI symptoms and pathology in PD animal models. We report that the prototypical parkinsonian neurotoxin, MPTP (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine), is a selective dopamine neuron toxin in the enteric nervous system (ENS). When examined 10 days after treatment, there was a 40% reduction of dopamine neurons in the ENS of C57Bl/6 mice administered MPTP (60 mg/kg). There were no differences in the density of cholinergic or nitric oxide neurons. Electrophysiological recording of neural-mediated muscle contraction in isolated colon from MPTP-treated animals confirmed a relaxation defect associated with dopaminergic degeneration. Behaviorally, MPTP induced a transient increase in colon motility, but no changes in gastric emptying or small intestine transit. These results provide the first comprehensive assessment of gastrointestinal pathophysiology in an animal model of PD. They provide insight into the impact of dopaminergic dysfunction on gastrointestinal motility and a benchmark for assessment of other PD model systems.


Neurogastroenterology and Motility | 2007

Diabetes and the enteric nervous system

Bindu Chandrasekharan; Shanthi Srinivasan

Abstract  Diabetes is associated with several changes in gastrointestinal (GI) motility and associated symptoms such as nausea, bloating, abdominal pain, diarrhoea and constipation. The pathogenesis of altered GI functions in diabetes is multifactorial and the role of the enteric nervous system (ENS) in this respect has gained significant importance. In this review, we summarize the research carried out on diabetes‐related changes in the ENS. Changes in the inhibitory and excitatory enteric neurons are described highlighting the role of loss of inhibitory neurons in early diabetic enteric neuropathy. The functional consequences of these neuronal changes result in altered gastric emptying, diarrhoea or constipation. Diabetes can also affect GI motility through changes in intestinal smooth muscle or alterations in extrinsic neuronal control. Hyperglycaemia and oxidative stress play an important role in the pathophysiology of these ENS changes. Antioxidants to prevent or treat diabetic GI motility problems have therapeutic potential. Recent research on the nerve–immune interactions demonstrates inflammation‐associated neurodegeneration which can lead to motility related problems in diabetes.


The FASEB Journal | 2007

Prohibitin protects against oxidative stress in intestinal epithelial cells

Arianne L. Theiss; Richard D. Idell; Shanthi Srinivasan; Jan-Michael A. Klapproth; Dean P. Jones; Didier Merlin; Shanthi V. Sitaraman

Prohibitin (PHB) is an evolutionarily conserved and ubiquitously expressed protein whose expression or function in intestinal diseases is not known. In this study, we examined the expression and role of PHB in oxidative stress associated with inflammatory bowel disease. Our results show that PHB primarily localizes to the mitochondria in intestinal epithelial cells. Its expression is down‐regulated during active human Crohns disease, experimental colitis in vivo, and oxidative stress in vitro. PHB overexpression increases the expression of glutathione‐S‐transferase π and protects from oxidant‐induced depletion of glutathione. Finally, PHB overexpression decreases accumulation of reactive oxygen metabolites, as well as increased permeability induced by oxidative stress in intestinal epithelial cells. Together, these results suggest that PHB constitutes a previously unrecognized cellular defense against oxidant injury. Thus, strategies to modulate PHB levels may constitute a novel therapeutic approach for intestinal inflammatory diseases, wherein oxidative stress plays a critical role in tissue injury and inflammation. Theiss, A. L., Idell, R. D., Srinivasan, S., Klapproth, J.‐M., Jones, D. P., Merlin, D., Sitaraman, S. V. Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J. 21, 197–206 (2007)


Experimental Neurology | 2009

Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease

James G. Greene; Ali Reza Noorian; Shanthi Srinivasan

Gastrointestinal (GI) dysfunction is the most common non-motor symptom of Parkinsons disease (PD). Symptoms of GI dysmotility in PD include early satiety and weight loss from delayed gastric emptying and constipation from impaired colonic transit. Understanding the pathophysiology and treatment of these symptoms in PD patients has been hampered by the lack of investigation into GI symptoms and pathology in PD animal models. We report that the parkinsonian neurotoxin and mitochondrial complex I inhibitor rotenone causes delayed gastric emptying and enteric neuronal dysfunction when administered chronically to rats in the absence of major motor dysfunction or CNS pathology. When examined 22-28 days after initiation of rotenone infusion by osmotic minipump (3 mg/kg/day), 45% of rotenone-treated rats had a profound delay in gastric emptying. Electrophysiological recording of neurally-mediated muscle contraction in isolated colon from rotenone-treated animals confirmed an enteric inhibitory defect associated with rotenone treatment. Rotenone also induced a transient decrease in stool frequency that was associated with weight loss and decreased food and water intake. Pathologically, no alterations in enteric neuron numbers or morphology were apparent in rotenone-treated animals. These results suggest that enteric inhibitory neurons may be particularly vulnerable to the effects of mitochondrial inhibition by parkinsonian neurotoxins and provide evidence that parkinsonian gastrointestinal abnormalities can be modeled in rodents.

Collaboration


Dive into the Shanthi Srinivasan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Merlin

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matam Vijay-Kumar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge