Alexander Pintzas
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Pintzas.
Biochimica et Biophysica Acta | 2009
Angeliki Voulgari; Alexander Pintzas
Epithelial-mesenchymal transition (EMT) is a key step during embryogenesis. Accumulating evidence suggests a critical role in cancer progression, through which tissue epithelial cancers invade and metastasise. Cell characteristics are highly affected during EMT, resulting in altered cell-cell and cell-matrix interactions, cell motility and invasiveness. Nevertheless, the demonstration of this process in human cancer has been proven difficult and controversial. Besides the fact that the acquisition of mesenchymal characteristics is not a prerequisite for cell migration/invasion, it is a transient event that concerns only few cells in a tumour mass. The induction of EMT depends on the tumour type and its genetic alterations as well as on its interaction with the extracellular matrix. In parallel, trials for EMT identification in clinical samples lack of a widely accepted methodology, nomenclature and reliable markers. This review summarizes the main EMT characteristics and proposes methodologies for better analysis in vitro. It also highlights recent studies identifying cells with EMT characteristics in human cancer and proposes certain markers to identify them in tumour samples. Finally, it cites the recent literature concerning the mechanisms of drug resistance related to EMT in the context of anti-tumour therapies and proposes related new targets for therapy.
Molecular Cancer Therapeutics | 2007
Faiy H. Psahoulia; Konstantinos G. Drosopoulos; Lenka Doubravska; Ladislav Andera; Alexander Pintzas
Cytokines such as tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) can induce apoptosis in colon cancer cells through engagement of death receptors. Nevertheless, evading apoptosis induced by anticancer drugs characterizes many types of cancers. This results in the need for combination therapy. In this study, we have investigated whether the flavonoid quercetin could sensitize human colon adenocarcinoma cell lines to TRAIL-induced apoptosis. We report that quercetin enhanced TRAIL-induced apoptosis by causing the redistribution of DR4 and DR5 into lipid rafts. Nystatin, a cholesterol-sequestering agent, prevented quercetin-induced clustering of death receptors and sensitization to TRAIL-induced apoptosis in colon adenocarcinoma cells. In addition, our experiments show that quercetin, in combination with TRAIL, triggered the mitochondrial-dependent death pathway, as shown by Bid cleavage and the release of cytochrome c to the cytosol. Together, our findings propose that quercetin, through its ability to redistribute death receptors at the cell surface, facilitates death-inducing signaling complex formation and activation of caspases in response to death receptor stimulation. Based on these results, this study provides a challenging approach to enhance the efficiency of TRAIL-based therapies. [Mol Cancer Ther 2007;6(9):2591–9]
Molecular Cancer | 2011
Eleni Makrodouli; Eftychia Oikonomou; Michal Koc; Ladislav Andera; Takehiko Sasazuki; Senji Shirasawa; Alexander Pintzas
BackgroundColorectal cancer is a common disease that involves genetic alterations, such as inactivation of tumour suppressor genes and activation of oncogenes. Among them are RAS and BRAF mutations, which rarely coexist in the same tumour. Individual members of the Rho (Ras homology) GTPases contribute with distinct roles in tumour cell morphology, invasion and metastasis. The aim of this study is to dissect cell migration and invasion pathways that are utilised by BRAFV600Eas compared to KRASG12V and HRASG12V oncoproteins. In particular, the role of RhoA (Ras homolog gene family, member A), Rac1 (Ras-related C3 botulinum toxin substrate 1) and Cdc42 (cell division cycle 42) in cancer progression induced by each of the three oncogenes is described.MethodsColon adenocarcinoma cells with endogenous as well as ectopically expressed or silenced oncogenic mutations of BRAFV600E, KRASG12V and HRASG12V were employed. Signalling pathways and Rho GTPases were inhibited with specific kinase inhibitors and siRNAs. Cell motility and invasion properties were correlated with cytoskeletal properties and Rho GTPase activities.ResultsEvidence presented here indicate that BRAFV600E significantly induces cell migration and invasion properties in vitro in colon cancer cells, at least in part through activation of RhoA GTPase. The relationship established between BRAFV600E and RhoA activation is mediated by the MEK-ERK pathway. In parallel, KRASG12V enhances the ability of colon adenocarcinoma cells Caco-2 to migrate and invade through filopodia formation and PI3K-dependent Cdc42 activation. Ultimately increased cell migration and invasion, mediated by Rac1, along with the mesenchymal morphology obtained through the Epithelial-Mesenchymal Transition (EMT) were the main characteristics rendered by HRASG12V in Caco-2 cells. Moreover, BRAF and KRAS oncogenes are shown to cooperate with the TGFβ-1 pathway to provide cells with additional transforming properties.ConclusionThis study discriminates oncogene-specific cell migration and invasion pathways mediated by Rho GTPases in colon cancer cells and reveals potential new oncogene-specific characteristics for targeted therapeutics.
Journal of Biological Chemistry | 2005
Konstantinos G. Drosopoulos; Michael L. Roberts; Lukas Cermak; Takehiko Sasazuki; Senji Shirasawa; Ladislav Andera; Alexander Pintzas
RAS oncogenes play a major role in cancer development by activating an array of signaling pathways, most notably mitogen-activated protein kinases, resulting in aberrant proliferation and inhibition of apoptotic signaling cascades, rendering transformed cells resistant to extrinsic death stimuli. However, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to kill specific tumor cells through the engagement of its receptors, death receptor 4 (DR4) and death receptor 5 (DR5), and the activation of apoptotic pathways, providing promising targets for anticancer therapies. In this study, we show that TRAIL induces cell death in human colon adenocarcinoma cells in a MEK-dependent manner. We also report a prolonged MEK-dependent activation of ERK1/2 and increased c-FOS expression induced by TRAIL in this system. Our study reveals that transformation of the colon cell line Caco-2 by Ki- and mainly by Ha-ras oncogenes sensitizes these cells to TRAIL-induced apoptosis by causing specific MEK-dependent up-regulation of DR4 and DR5. These observations taken together reveal that RAS-MEK-ERK1/2 signaling pathway can sensitize cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 and overall imply that TRAIL-based therapeutic strategies using TRAIL agonists could be used in cases of human colon cancers bearing RAS mutations.
International Journal of Cancer | 2007
Chrysovalantis Andreolas; Margarita Kalogeropoulou; Angeliki Voulgari; Alexander Pintzas
The process of epithelial mesenchymal transition, whereby cells acquire molecular alterations and fibroblastic features, is a fundamental process of embryogenesis and cancer invasion/metastasis. The mechanisms responsible for epithelial mesenchymal transition remain elusive. Human tumors frequently establish constitutively activated RAS signaling, which contributes to the malignant phenotype. In an effort to dissect distinct RAS isoform specific functions, we previously established human colon cell lines stably overexpressing activated Harvey‐RAS (Ha‐RAS) and Kirsten‐RAS (Ki‐RAS). Using these, we observed that only oncogenic Ha‐RAS overexpression resulted in morphologic and molecular changes suggestive of epithelial to mesenchymal transition. We showed that vimentin, a key molecule of epithelial mesenchymal transition, was differentially regulated between Ha‐RAS and Ki‐RAS leading to a Ha‐RAS specific induction of a migrative phenotype and eventually epithelial to mesenchymal transition. We demonstrated that the AP‐1 sites in vimentin promoter could be involved in this regulation. A potential role of FRA‐1 was suggested in the regulation of vimentin during the Ha‐RAS‐induced epithelial to mesenchymal transition, in association with colon cell migration. Our results therefore propose that in colon cells, the induction of epithelial mesenchymal transition by oncogenic Ha‐RAS could occur through the overexpression of proteins like FRA‐1 and vimentin.
Epigenetics | 2014
Angelo Ferraro; Christos K Kontos; Themis Boni; Ioannis Bantounas; Dimitra Siakouli; Vivian Kosmidou; Margarita Vlassi; Yannis Spyridakis; Iraklis Tsipras; George Zografos; Alexander Pintzas
Previous studies have uncovered several transcription factors that determine biological alterations in tumor cells to execute the invasion-metastasis cascade, including the epithelial-mesenchymal transition (EMT). We sought to investigate the role of miR-21 in colorectal cancer regulation. For this purpose, miR-21 expression was quantified in a panel of colorectal cancer cell lines and clinical specimens. High expression was found in cell lines with EMT properties and in the vast majority of human tumor specimens. We demonstrate in a cell-specific manner the occupancy of MIR-21 gene promoter by AP-1 and ETS1 transcription factors and, for the first time, the pattern of histone posttranslational modifications necessary for miR-21 overexpression. We also show that Integrin-β4 (ITGβ4), exclusively expressed in polarized epithelial cells, is a novel miR-21 target gene and plays a role in the regulation of EMT, since it is remarkably de-repressed after transient miR-21 silencing and downregulated after miR-21 overexpression. miR-21-dependent change of ITGβ4 expression significantly affects cell migration properties of colon cancer cells. Finally, in a subgroup of tumor specimens, ROC curve analysis performed on quantitative PCR data sets for miR-21, ITGβ4, and PDCD4 shows that the combination of high miR-21 with low ITGβ4 and PDCD4 expression is able to predict presence of metastasis. In conclusion, miR-21 is a key player in oncogenic EMT, its overexpression is controlled by the cooperation of genetic and epigenetic alterations, and its levels, along with ITGβ4 and PDCD4 expression, could be exploited as a prognostic tool for CRC metastasis.
Human Mutation | 2014
Vivian Kosmidou; Eftychia Oikonomou; Margarita Vlassi; Spyros Avlonitis; Anastasia Katseli; Iraklis Tsipras; Despina Mourtzoukou; Georgios Kontogeorgos; Georgios Zografos; Alexander Pintzas
Current clinical problems in colorectal cancer (CRC) diagnostics and therapeutics include the disease complexity, tumor heterogeneity, and resistance to targeted therapeutics. In the present study, we examined 171 CRC adenocarcinomas from Greek patients undergoing surgery for CRC to determine the frequency of KRAS, BRAF, and PIK3CA point mutations from different areas of tumors in heterogeneous specimens. Ninety two out of 171 (53.8%) patients were found to bear a KRAS mutation in codons 12/13. Of the 126 mutations found, 57.9% (73/126) were c.38G>A mutations (p.G13D) and 22.2% (28/126) were c.35G>T (p.G12V). Remarkably, RAS mutations in both codons 12 and 13 were recorded in the same tumor by pyrosequencing. Moreover, differences in KRAS mutations between tumor center and periphery revealed tumor heterogeneity in 50.7% of the specimens. BRAF c.1799T>A (V600E) mutations were moderately detected in 4/171 (2.3%) specimens, whereas most PIK3CA mutations were revealed by pyrosequencing 6/171 (3.5%). Remarkable tumor heterogeneity is revealed, where double mutations of KRAS in the same tumor and different KRAS mutation status between tumor core and margin are detected with high frequency. It is expected that these findings will have a major impact in cancer diagnosis and personalized therapies.
British Journal of Cancer | 2007
Eftychia Oikonomou; K. Kothonidis; Georgios Zografos; George Nasioulas; Ladislav Andera; Alexander Pintzas
Most data on the therapeutic potential of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as resistance to FAS ligand (FASL) in colorectal cancer have come from in vitro studies using cell lines. To gain a clearer understanding about the susceptibility of patient tumours to TRAIL and FASL, we derived primary human cancer epithelial cells from colon cancer patients. Characterisation of primary cultures PAP60 and MIH55 determined their highly proliferating advantage, transforming capability and tumorigenicity in vitro and in vivo. Although FASL treatment appeared to cause little apoptosis only in the PAP60 primary culture, increased apoptosis independent of p53 was observed in both primary PAP60 and MIH55 and control cell lines Caco-2, HT29 and DLD-1 after treatment with SuperKiller TRAIL. Expression analysis of death receptors (DR) in the original parental tumours, the primary cultures before and after engraftment as well as the mouse xenografts, revealed a significant upregulation of both DR4 and DR5, which correlated to differences in sensitivity of the cells to TRAIL-induced apoptosis. Treating patient tumour xenograft/SCID mouse models with Killer TRAIL in vivo suppressed tumour growth. This is the first demonstration of TRAIL-induced apoptosis in characterised tumorigenic primary human cultures (in vitro) and antitumour activity in xenograft models (in vivo).
International Journal of Cancer | 2006
Michael L. Roberts; Konstantinos G. Drosopoulos; Ioannis Vasileiou; Mona Stricker; Era Taoufik; Christian Maercker; Apostolia Guialis; Michael N. Alexis; Alexander Pintzas
Colorectal cancer arises after a series of mutational events in the colon epithelia and is often used as a model of the multistep progression of tumorigenesis. Mutations in Ki‐Ras have been detected in some 50% of cases and are thought to occur at an early stage. Almost never do mutations arise in the loci of other Ras isoforms (Ha‐ and N‐), leading to the assumption that Ki‐Ras plays a unique role in tumorigenesis. In order to examine the distinctive function that Ki‐Ras plays in cancer development in the colon, we introduced constitutively active mutant Ki‐ and Ha‐Ras genes into an intermediate‐stage colon adenoma cell line (Caco‐2). We found that mutant active Ha‐RasV12 was more efficient at transforming these colon epithelial cells as assessed by anchorage‐independent growth, tumor formation in SCID mice and the development of mesenchymal morphology compared to transformation by Ki‐RasV12. We conducted microarray analysis in an attempt to reveal the genes whose aberrant expression is a direct result of overexpression of either Ki‐RasV12 or Ha‐RasV12. We used Clontechs Atlas cancer cDNA (588 genes) and RZPDs Onco Set 1 (1,544 genes) arrays. We identified fewer genes that were commonly regulated than were differentially expressed between Ki‐ and Ha‐RasV12 isoforms. Specifically, we found that Ki‐RasV12 regulated genes involved in cytokine signaling, cell adhesion and colon development, whereas Ha‐RasV12 mainly regulated genes involved in controlling cell morphology, correlating to an epithelial‐mesenchymal transition only observed in these cells. Our results demonstrate how 2 Ras isoforms regulate disparate biologic processes, revealing a number of genes whose deregulated expression may influence colon carcinogenesis (supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020‐7136/suppmat/index.html).
PLOS ONE | 2011
Eftychia Oikonomou; Michal Koc; Vladimira Sourkova; Ladislav Andera; Alexander Pintzas
Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAFV600E alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAFV600E mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKOBRAFV600E/PIK3CAH1047 cells. In contrast, for the same level of apoptosis in HT29BRAFV600E/PIK3CAP449T cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAFV600E. TRAIL dependence on the constitutive activation of BRAFV600E is emphasised through the overexpression of BRAFV600E in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CAMT as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAFV600E mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAFV600E inhibitors in combination with TRAIL in a BRAFV600E mutated background and provided insight for new anti-cancer strategies where the activated PI3KCA mutation oncogene should be suppressed.