Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Poliakov is active.

Publication


Featured researches published by Alexander Poliakov.


Nature | 2009

The Sorghum bicolor genome and the diversification of grasses

Andrew H. Paterson; John E. Bowers; Rémy Bruggmann; Inna Dubchak; Jane Grimwood; Heidrun Gundlach; Georg Haberer; Uffe Hellsten; Therese Mitros; Alexander Poliakov; Jeremy Schmutz; Manuel Spannagl; Haibao Tang; Xiyin Wang; Thomas Wicker; Arvind K. Bharti; Jarrod Chapman; F. Alex Feltus; Udo Gowik; Igor V. Grigoriev; Eric Lyons; Christopher A. Maher; Mihaela Martis; Apurva Narechania; Robert Otillar; Bryan W. Penning; Asaf Salamov; Yu Wang; Lifang Zhang; Nicholas C. Carpita

Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum–rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum’s drought tolerance.


Science | 2010

The Genome of the Western Clawed Frog Xenopus tropicalis

Uffe Hellsten; Richard M. Harland; Michael J. Gilchrist; David A. Hendrix; Jerzy Jurka; Vladimir V. Kapitonov; Ivan Ovcharenko; Nicholas H. Putnam; Shengqiang Shu; Leila Taher; Ira L. Blitz; Bruce Blumberg; Darwin S. Dichmann; Inna Dubchak; Enrique Amaya; John C. Detter; Russell B. Fletcher; Daniela S. Gerhard; David L. Goodstein; Tina Graves; Igor V. Grigoriev; Jane Grimwood; Takeshi Kawashima; Erika Lindquist; Susan Lucas; Paul E. Mead; Therese Mitros; Hajime Ogino; Yuko Ohta; Alexander Poliakov

Frog Genome The African clawed frog Xenopus tropicalis is the first amphibian to have its genome sequenced. Hellsten et al. (p. 633, see the cover) present an analysis of a draft assembly of the genome. The genome of the frog, which is an important model system for developmental biology, encodes over 20,000 protein-coding genes, of which more than 1700 genes have identified human disease associations. Detailed comparison of the content of protein-coding genes with other tetrapods—human and chicken—reveals extensive shared synteny, occasionally spanning entire chromosomes. Assembly, annotation, and analysis of the frog genome compares gene content and synteny with the human and chicken genomes. The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.


Nucleic Acids Research | 2012

The Genome Portal of the Department of Energy Joint Genome Institute

Igor V. Grigoriev; Henrik Nordberg; Igor Shabalov; Andrea Aerts; Mike Cantor; David M. Goodstein; Alan Kuo; Simon Minovitsky; Roman Nikitin; Robin A. Ohm; Robert Otillar; Alexander Poliakov; Igor Ratnere; Robert Riley; Tatyana Smirnova; Daniel Rokhsar; Inna Dubchak

The Department of Energy (DOE) Joint Genome Institute (JGI) is a national user facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing genomics for bioenergy and environmental applications. Beyond generating tens of trillions of DNA bases annually, the Institute develops and maintains data management systems and specialized analytical capabilities to manage and interpret complex genomic data sets, and to enable an expanding community of users around the world to analyze these data in different contexts over the web. The JGI Genome Portal (http://genome.jgi.doe.gov) provides a unified access point to all JGI genomic databases and analytical tools. A user can find all DOE JGI sequencing projects and their status, search for and download assemblies and annotations of sequenced genomes, and interactively explore those genomes and compare them with other sequenced microbes, fungi, plants or metagenomes using specialized systems tailored to each particular class of organisms. We describe here the general organization of the Genome Portal and the most recent addition, MycoCosm (http://jgi.doe.gov/fungi), a new integrated fungal genomics resource.


Nucleic Acids Research | 2007

A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing

Debopriya Das; Tyson A. Clark; Anthony C. Schweitzer; Miki L. Yamamoto; Henry Marr; Josh Arribere; Simon Minovitsky; Alexander Poliakov; Inna Dubchak; John E. Blume; John G. Conboy

Correlation of motif occurrences with gene expression intensity is an effective strategy for elucidating transcriptional cis-regulatory logic. Here we demonstrate that this approach can also identify cis-regulatory elements for alternative pre-mRNA splicing. Using data from a human exon microarray, we identified 56 cassette exons that exhibited higher transcript-normalized expression in muscle than in other normal adult tissues. Intron sequences flanking these exons were then analyzed to identify candidate regulatory motifs for muscle-specific alternative splicing. Correlation of motif parameters with gene-normalized exon expression levels was examined using linear regression and linear splines on RNA words and degenerate weight matrices, respectively. Our unbiased analysis uncovered multiple candidate regulatory motifs for muscle-specific splicing, many of which are phylogenetically conserved among vertebrate genomes. The most prominent downstream motifs were binding sites for Fox1- and CELF-related splicing factors, and a branchpoint-like element acuaac; pyrimidine-rich elements resembling PTB-binding sites were most significant in upstream introns. Intriguingly, our systematic study indicates a paucity of novel muscle-specific elements that are dominant in short proximal intronic regions. We propose that Fox and CELF proteins play major roles in enforcing the muscle-specific alternative splicing program, facilitating expression of unique isoforms of cytoskeletal proteins critical to muscle cell function.


Genome Research | 2009

Multiple whole-genome alignments without a reference organism

Inna Dubchak; Alexander Poliakov; Andrey Kislyuk; Michael Brudno

Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and six Drosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families-perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.


Nucleic Acids Research | 2007

Multiple whole genome alignments and novel biomedical applications at the VISTA portal.

Michael Brudno; Alexander Poliakov; Simon Minovitsky; Igor Ratnere; Inna Dubchak

The VISTA portal for comparative genomics is designed to give biomedical scientists a unified set of tools to lead them from the raw DNA sequences through the alignment and annotation to the visualization of the results. The VISTA portal also hosts the alignments of a number of genomes computed by our group, allowing users to study the regions of their interest without having to manually download the individual sequences. Here we describe various algorithmic and functional improvements implemented in the VISTA portal over the last 2 years. The VISTA Portal is accessible at http://genome.lbl.gov/vista.


Biology Direct | 2007

Extensive parallelism in protein evolution

Georgii A. Bazykin; Fyodor A. Kondrashov; Michael Brudno; Alexander Poliakov; Inna Dubchak; Alexey S. Kondrashov

BackgroundIndependently evolving lineages mostly accumulate different changes, which leads to their gradual divergence. However, parallel accumulation of identical changes is also common, especially in traits with only a small number of possible states.ResultsWe characterize parallelism in evolution of coding sequences in three four-species sets of genomes of mammals, Drosophila, and yeasts. Each such set contains two independent evolutionary paths, which we call paths I and II. An amino acid replacement which occurred along path I also occurs along path II with the probability 50–80% of that expected under selective neutrality. Thus, the per site rate of parallel evolution of proteins is several times higher than their average rate of evolution, but still lower than the rate of evolution of neutral sequences. This deficit may be caused by changes in the fitness landscape, leading to a replacement being possible along path I but not along path II. However, constant, weak selection assumed by the nearly neutral model of evolution appears to be a more likely explanation. Then, the average coefficient of selection associated with an amino acid replacement, in the units of the effective population size, must exceed ~0.4, and the fraction of effectively neutral replacements must be below ~30%. At a majority of evolvable amino acid sites, only a relatively small number of different amino acids is permitted.ConclusionHigh, but below-neutral, rates of parallel amino acid replacements suggest that a majority of amino acid replacements that occur in evolution are subject to weak, but non-trivial, selection, as predicted by Ohtas nearly-neutral theory.ReviewersThis article was reviewed by John McDonald (nominated by Laura Landweber), Sarah Teichmann and Subhajyoti De, and Chris Adami.


BMC Genomics | 2015

Functionally conserved enhancers with divergent sequences in distant vertebrates.

Song Yang; Nir Oksenberg; Sachiko Takayama; Seok Jin Heo; Alexander Poliakov; Nadav Ahituv; Inna Dubchak; Dario Boffelli

BackgroundTo examine the contributions of sequence and function conservation in the evolution of enhancers, we systematically identified enhancers whose sequences are not conserved among distant groups of vertebrate species, but have homologous function and are likely to be derived from a common ancestral sequence. Our approach combined comparative genomics and epigenomics to identify potential enhancer sequences in the genomes of three groups of distantly related vertebrate species.ResultsWe searched for sequences that were conserved within groups of closely related species but not between groups of more distant species, and were associated with an epigenetic mark of enhancer activity. To facilitate inferring orthology between non-conserved sequences, we limited our search to introns whose orthology could be unambiguously established by mapping the bracketing exons. We show that a subset of these non-conserved but syntenic sequences from the mouse and zebrafish genomes have homologous functions in a zebrafish transgenic enhancer assay. The conserved expression patterns driven by these enhancers are probably associated with short transcription factor-binding motifs present in the divergent sequences.ConclusionsWe have identified numerous potential enhancers with divergent sequences but a conserved function. These results indicate that selection on function, rather than sequence, may be a common mode of enhancer evolution; evidence for selection at the sequence level is not a necessary criterion to define a gene regulatory element.


Nucleic Acids Research | 2004

VISTA: computational tools for comparative genomics

Kelly A. Frazer; Lior Pachter; Alexander Poliakov; Edward M. Rubin; Inna Dubchak


Bioinformatics | 2000

VISTA : visualizing global DNA sequence alignments of arbitrary length

Chris Mayor; Michael Brudno; Jody R. Schwartz; Alexander Poliakov; Edward M. Rubin; Kelly A. Frazer; Lior Pachter; Inna Dubchak

Collaboration


Dive into the Alexander Poliakov's collaboration.

Top Co-Authors

Avatar

Inna Dubchak

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Edward M. Rubin

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lior Pachter

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Asaf Salamov

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Dmitriy Ryaboy

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Igor V. Grigoriev

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Couronne

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge