Alexander Prehn-Kristensen
University of Kiel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Prehn-Kristensen.
PLOS ONE | 2009
Alexander Prehn-Kristensen; Christian D. Wiesner; Til O. Bergmann; Stephan Wolff; Olav Jansen; Hubertus Maximilian Mehdorn; Roman Ferstl; Bettina M. Pause
The communication of stress/anxiety between conspecifics through chemosensory signals has been documented in many vertebrates and invertebrates. Here, we investigate how chemosensory anxiety signals conveyed by the sweat of humans (N = 49) awaiting an academic examination are processed by the human brain, as compared to chemosensory control signals obtained from the same sweat donors in a sport condition. The chemosensory stimuli were pooled according to the donation condition and administered to 28 participants (14 males) synchronously to breathing via an olfactometer. The stimuli were perceived with a low intensity and accordingly only about half of the odor presentations were detected by the participants. The fMRI results (event-related design) show that chemosensory anxiety signals activate brain areas involved in the processing of social emotional stimuli (fusiform gyrus), and in the regulation of empathic feelings (insula, precuneus, cingulate cortex). In addition, neuronal activity within attentional (thalamus, dorsomedial prefrontal cortex) and emotional (cerebellum, vermis) control systems were observed. The chemosensory perception of human anxiety seems to automatically recruit empathy-related resources. Even though the participants could not attentively differentiate the chemosensory stimuli, emotional contagion seems to be effectively mediated by the olfactory system.
Journal of Experimental Child Psychology | 2009
Alexander Prehn-Kristensen; Robert Göder; Stefania Chirobeja; Inka Breßmann; Roman Ferstl; Lioba Baving
Although the consolidation of several memory systems is enhanced by sleep in adults, recent studies suggest that sleep supports declarative memory but not procedural memory in children. In the current study, the influence of sleep on emotional declarative memory (recognition task) and procedural memory (mirror tracing task) in 20 healthy children (10-13 years of age) was examined. After sleep, children showed an improvement in declarative memory. Separate analysis with respect to the emotional stimulus content revealed that sleep enhances the recognition of emotional stimuli (p>.001) rather than neutral stimuli (p=.084). In the procedural task, however, no sleep-enhanced memory improvement was observed. The results indicate that sleep in children, comparable to adults, enhances predominantly emotional declarative memory; however, in contrast to adults, it has no effect on the consolidation of procedural memory.
International Journal of Psychophysiology | 2009
Bettina M. Pause; Dirk Adolph; Alexander Prehn-Kristensen; Roman Ferstl
The present study aimed to investigate whether withdrawal related behavior is activated in the context of chemosensory anxiety signals. Moreover, it was examined whether chemosensory perception of social stress is modulated by the degree of social anxiety. Axillary sweat was collected from students, awaiting an oral examination at the university (anxiety condition) and from the same students in a sport control condition. The chemosensory stimuli were presented to 32 participants (16 socially anxious) via an olfactometer during inhalation (duration=3 s). 102 dB white noise bursts served as startle probes. During a single session only male or female axillary sweat was presented, therefore, all participants were tested in two separate sessions. Even though the chemosensory stimuli were perceived at the perceptual threshold level, participants could identify (forced choice) the emotion of the donors in the anxiety condition. In the context of chemosensory anxiety signals the acoustic startle reflex was significantly augmented as compared to startle responses obtained in the context of sport sweat (p=0.002). This effect was more pronounced in socially anxious than in non-anxious participants. It is concluded that human motor systems automatically adapt to chemosensory stress signals. This adaptation is neither dependent on the gender of the odor donor nor on the gender of the perceiver, but is intensified in socially anxious participants.
Brain Stimulation | 2014
Alexander Prehn-Kristensen; Manuel Munz; Robert Göder; Ines Wilhelm; Katharina Korr; Wiebke Vahl; Christian D. Wiesner; Lioba Baving
BACKGROUND Slow oscillations (<1 Hz) during slow wave sleep (SWS) promote the consolidation of declarative memory. Children with attention-deficit/hyperactivity disorder (ADHD) have been shown to display deficits in sleep-dependent consolidation of declarative memory supposedly due to dysfunctional slow brain rhythms during SWS. OBJECTIVE Using transcranial oscillating direct current stimulation (toDCS) at 0.75 Hz, we investigated whether an externally triggered increase in slow oscillations during early SWS elevates memory performance in children with ADHD. METHODS 12 children with ADHD underwent a toDCS and a sham condition in a double-blind crossover study design conducted in a sleep laboratory. Memory was tested using a 2D object-location task. In addition, 12 healthy children performed the same memory task in their home environment. RESULTS Stimulation enhanced slow oscillation power in children with ADHD and boosted memory performance to the same level as in healthy children. CONCLUSION These data indicate that increasing slow oscillation power during sleep by toDCS can alleviate declarative memory deficits in children with ADHD.
Sleep Medicine | 2011
Alexander Prehn-Kristensen; Robert Göder; Jochen Fischer; Ines Wilhelm; Mareen Seeck-Hirschner; Josef B. Aldenhoff; Lioba Baving
OBJECTIVE Sleep supports the consolidation of declarative memory. Patients with attention-deficit/hyperactivity disorder (ADHD) are not only characterized by sleep problems but also by declarative memory deficits. Given that the consolidation of declarative memory during sleep is supported by slow oscillations, which are predominantly generated by the prefrontal cortex, and that ADHD patients display low prefrontal brain activity, we assumed that ADHD patients show reduced sleep-associated consolidation of declarative memory. METHODS The impact of sleep on the consolidation of declarative memory was examined with a picture recognition task. Twelve ADHD patients (10-16 years) and 12 healthy controls participated in two experimental conditions: in the sleep condition, learning was performed in the evening and picture recognition was tested after nocturnal sleep; in the wake condition, learning was conducted in the morning while retrieval took place after a day of wakefulness. RESULTS Analyses of recognition accuracy revealed reduced sleep-associated enhancement of recognition accuracy in ADHD. While sleep-associated enhancement of recognition accuracy was correlated with slow oscillation power during non-REM sleep in healthy controls, no such correlations were observed in ADHD. CONCLUSIONS These data indicate a deficit in sleep-associated consolidation of declarative memory in ADHD. Moreover, our results suggest reduced functionality of slow oscillations in sleep-associated consolidation of declarative memory in ADHD.
PLOS ONE | 2013
Alexander Prehn-Kristensen; Manuel Munz; Ina Molzow; Ines Wilhelm; Christian D. Wiesner; Lioba Baving
Fronto-limbic brain activity during sleep is believed to support the consolidation of emotional memories in healthy adults. Attention deficit-hyperactivity disorder (ADHD) is accompanied by emotional deficits coincidently caused by dysfunctional interplay of fronto-limbic circuits. This study aimed to examine the role of sleep in the consolidation of emotional memory in ADHD in the context of healthy development. 16 children with ADHD, 16 healthy children, and 20 healthy adults participated in this study. Participants completed an emotional picture recognition paradigm in sleep and wake control conditions. Each condition had an immediate (baseline) and delayed (target) retrieval session. The emotional memory bias was baseline–corrected, and groups were compared in terms of sleep-dependent memory consolidation (sleep vs. wake). We observed an increased sleep-dependent emotional memory bias in healthy children compared to children with ADHD and healthy adults. Frontal oscillatory EEG activity (slow oscillations, theta) during sleep correlated negatively with emotional memory performance in children with ADHD. When combining data of healthy children and adults, correlation coefficients were positive and differed from those in children with ADHD. Since children displayed a higher frontal EEG activity than adults these data indicate a decline in sleep-related consolidation of emotional memory in healthy development. In addition, it is suggested that deficits in sleep-related selection between emotional and non-emotional memories in ADHD exacerbate emotional problems during daytime as they are often reported in ADHD.
Sleep Medicine | 2015
Robert Göder; Anna Graf; Felix Ballhausen; Sara Lena Weinhold; Paul Christian Baier; Klaus Junghanns; Alexander Prehn-Kristensen
OBJECTIVES Deficits in declarative memory performance are among the most severe neuropsychological impairments in schizophrenia and contribute to poor clinical outcomes. The importance of sleep for brain plasticity and memory consolidation is widely accepted, and sleep spindles seem to play an important role in these processes. The aim of this study was to test the associations of sleep spindles and picture memory consolidation in patients with schizophrenia and healthy controls. METHODS We studied 16 patients with schizophrenia on stable antipsychotic medication (mean age ± standard deviation, 29.4 ± 6.4 years) and 16 healthy controls matched for age and educational level. Sleep was recorded and scored according to American Academy of Sleep Medicine (AASM) standard criteria. We performed a picture recognition paradigm and compared recognition performance for neutral and emotional pictures in sleep and wake conditions. RESULTS Recognition accuracy was better in healthy controls than in patients with schizophrenia in the sleep and wake conditions. However, the memory-promoting effect of sleep was significantly lower in schizophrenia patients than in controls. Sleep spindle activity was reduced in patients, and sleep spindle density was correlated with sleep-associated facilitation of recognition accuracy for neutral pictures. CONCLUSION Reduced sleep spindles seem to play an important role as a possible mechanism or biomarker for impaired sleep-related memory consolidation in patients with schizophrenia, and are a new target for treatment to improve memory functions and clinical outcomes in these patients.
Neurobiology of Learning and Memory | 2015
Christian D. Wiesner; Julika Pulst; Fanny Krause; Marike Elsner; Lioba Baving; Anya Pedersen; Alexander Prehn-Kristensen; Robert Göder
Emotion boosts the consolidation of events in the declarative memory system. Rapid eye movement (REM) sleep is believed to foster the memory consolidation of emotional events. On the other hand, REM sleep is assumed to reduce the emotional tone of the memory. Here, we investigated the effect of selective REM-sleep deprivation, SWS deprivation, or wake on the affective evaluation and consolidation of emotional and neutral pictures. Prior to an 9-h retention interval, sixty-two healthy participants (23.5 ± 2.5 years, 32 female, 30 male) learned and rated their affect to 80 neutral and 80 emotionally negative pictures. Despite rigorous deprivation of REM sleep or SWS, the residual sleep fostered the consolidation of neutral and negative pictures. Furthermore, emotional arousal helped to memorize the pictures. The better consolidation of negative pictures compared to neutral ones was most pronounced in the SWS-deprived group where a normal amount of REM sleep was present. This emotional memory bias correlated with REM sleep only in the SWS-deprived group. Furthermore, emotional arousal to the pictures decreased over time, but neither sleep nor wake had any differential effect. Neither the comparison of the affective ratings (arousal, valence) during encoding and recognition, nor the affective ratings of the recognized targets and rejected distractors supported the hypothesis that REM sleep dampens the emotional reaction to remembered stimuli. The data suggest that REM sleep fosters the consolidation of emotional memories but has no effect on the affective evaluation of the remembered contents.
Brain Research | 2011
Alexander Prehn-Kristensen; Kerstin Krauel; Hermann Hinrichs; Jochen Fischer; Ulrike Malecki; Hartmut Schuetze; Stephan Wolff; Olav Jansen; Emrah Duezel; Lioba Baving
Patients with attention-deficit/hyperactivity disorder (ADHD) show deficits in working memory (WM) which may be related to prefrontal dysfunction. Methylphenidate (MPH) can restore WM deficits in ADHD by enhancing prefrontal activity. At the same time, changes in striatal activation could cause ADHD patients to be more interference-sensitive during working memory tasks. However, it is unclear whether MPH reduces WM distractibility in ADHD. In this fMRI study, 12 ADHD patients and 12 healthy controls participated on two separate days in a delayed-match-to-sample test. During the delay interval, a distractor stimulus was presented in half of the trials. Children and adolescents with ADHD received MPH only on one of the two sessions. Behavioral data analyses revealed that MPH normalized WM in ADHD. However, MPH did not improve WM performance when a distractor was presented during the delay interval. Functional images showed that MPH enhanced prefrontal activity during the delay in ADHD patients when no distractor was present. If the delay was interrupted by a distractor, only healthy controls showed activation of the caudate. In patients with ADHD, however, in line with behavioral data, MPH did not enhance caudate activity. In healthy youth, caudate activity is involved in interference control allowing the successful maintenance of information in working memory even in the presence of distraction. Our findings suggest that interference control, linked to caudate activity, is not adequately enhanced by MPH in ADHD.
Research in Developmental Disabilities | 2011
Alexander Prehn-Kristensen; Ina Molzow; Manuel Munz; Ines Wilhelm; Kathrin Müller; Damaris Freytag; Christian D. Wiesner; Lioba Baving
Sleep supports the consolidation of declarative and procedural memory. While prefrontal cortex (PFC) activity supports the consolidation of declarative memory during sleep, opposite effects of PFC activity are reported with respect to the consolidation of procedural memory during sleep. Patients with attention-deficit/hyperactivity disorder (ADHD) are characterised by a prefrontal hypoactivity. Therefore, we hypothesised that children with ADHD benefit from sleep with respect to procedural memory more than healthy children. Sixteen children with ADHD and 16 healthy controls (aged 9-12) participated in this study. A modification of the serial-reaction-time task was conducted. In the sleep condition, learning took place in the evening and retrieval after a night of sleep, whereas in the wake condition learning took place in the morning and retrieval in the evening without sleep. Children with ADHD showed an improvement in motor skills after sleep compared to the wake condition. Sleep-associated gain in reaction times was positively correlated with the amount of sleep stage 4 and REM-density in ADHD. As expected, sleep did not benefit motor performance in the group of healthy children. These data suggest that sleep in ADHD normalizes deficits in procedural memory observed during daytime. It is discussed whether in patients with ADHD attenuated prefrontal control enables sleep-dependent gains in motor skills by reducing the competitive interference between explicit and implicit components within a motor task.