Alexander Reuter
University of Konstanz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Reuter.
Nature | 2006
Conrad C. Bleul; Tatiana Corbeaux; Alexander Reuter; Paul Fisch; Jürgen Schulte Mönting; Thomas Boehm
The thymus is essential for the generation of self-tolerant effector and regulatory T cells. Intrathymic T-cell development requires an intact stromal microenvironment, of which thymic epithelial cells (TECs) constitute a major part. For instance, cell-autonomous genetic defects of forkhead box N1 (Foxn1) and autoimmune regulator (Aire) in thymic epithelial cells cause primary immunodeficiency and autoimmunity, respectively. During development, the thymic epithelial rudiment gives rise to two major compartments, the cortex and medulla. Cortical TECs positively select T cells, whereas medullary TECs are involved in negative selection of potentially autoreactive T cells. It has long been unclear whether these two morphologically and functionally distinct types of epithelial cells arise from a common bi-potent progenitor cell and whether such progenitors are still present in the postnatal period. Here, using in vivo cell lineage analysis in mice, we demonstrate the presence of a common progenitor of cortical and medullary TECs after birth. To probe the function of postnatal progenitors, a conditional mutant allele of Foxn1 was reverted to wild-type function in single epithelial cells in vivo. This led to the formation of small thymic lobules containing both cortical and medullary areas that supported normal thymopoiesis. Thus, single epithelial progenitor cells can give rise to a complete and functional thymic microenvironment, suggesting that cell-based therapies could be developed for thymus disorders.
Cellular and Molecular Life Sciences | 2005
Matthias F. Langhorst; Alexander Reuter; Claudia A. O. Stuermer
Abstract.Reggie/flotillin proteins are considered to be components of lipid rafts and are commonly used as marker proteins for lipid microdomains. Yet almost a decade after their discovery, the function of reggies/ flotillins is still enigmatic. In this review we summarize the present state of knowledge on reggie/flotillin structure, localization and function, and discuss the role of the proteins in development and disease. Based on insights into reggie/flotillin function and by comparison with related proteins of the so-called SPFH (Stomatin/Prohibitin/Flotillin/HflK/C) protein family, including stomatin, podocin and prohibitin, we propose the existence of specific types of protein-defined microdomains which are sculpt by the clustering of individual SPFH proteins. As ‘specialized rafts’ similar to caveolae, these membrane domains provide platforms for the recruitment of multiprotein complexes. Since, under certain circumstances, reggie-2/flotillin-1 translocates to the nucleus, reggie/ flotillin microdomains are not only stable scaffolds but also dynamic units with their own regulatory functions.
European Journal of Cell Biology | 2008
Matthias F. Langhorst; Alexander Reuter; Friederike A. Jaeger; Frank M. Wippich; Georg Luxenhofer; Helmut Plattner; Claudia A. O. Stuermer
The reggie/flotillin proteins oligomerize and associate into clusters which form scaffolds for membrane microdomains. Besides their localization at the plasma membrane, the reggies/flotillins reside at various intracellular compartments; however, the trafficking pathways used by reggie-1/flotillin-2 remain unclear. Here, we show that trafficking of reggie-1/flotillin-2 is BFA sensitive and that deletion mutants of reggie-1/flotillin-2 accumulate in the Golgi complex in HeLa, Jurkat and PC12 cells, suggesting Golgi-dependent trafficking of reggie-1/flotillin-2. Using total internal reflection fluorescence microscopy, we observed fast cycling of reggie-1/flotillin-2-positive vesicles at the plasma membrane, which engaged in transient interactions with the plasma membrane only. Reggie-1/flotillin-2 cycling was independent of clathrin, but was inhibited by cholesterol depletion and microtubule disruption. Cycling of reggie-1/flotillin-2 was negatively correlated with cell-cell contact formation but was stimulated by serum, epidermal growth factor and by cholesterol loading mediated by low density lipoproteins. However, reggie-1/flotillin-2 was neither involved in endocytosis of the epidermal growth factor itself nor in endocytosis of GPI-GFPs or the GPI-anchored cellular prion protein (PrP(c)). Reggie-2/flotillin-1 and stomatin-1 also exhibited cycling at the plasma membrane similar to reggie-1/flotillin-2, but these vesicles and microdomains only partially co-localized with reggie-2/flotillin-1. Thus, regulated vesicular cycling might be a general feature of SPFH protein-dependent trafficking.
The FASEB Journal | 2006
Matthias F. Langhorst; Alexander Reuter; Georg Luxenhofer; Eva-Maria Boneberg; Daniel F. Legler; Helmut Plattner; Claudia A. O. Stuermer
T cell activation after contact with an antigen‐presenting cell depends on the regulated assembly of the T cell receptor signaling complex, which involves the polarized assembly of a stable, raft‐like macrodomain surrounding engaged T cell receptors. Here we show that the preformed reggie/flotillin caps present in resting T cells act as priming platforms for macrodomain assembly. Preformed reggie‐1/flotillin‐2 caps are exceptionally stable, as shown by fluorescence recovery after photobleaching (FRAP). Upon T cell stimulation, signaling molecules are recruited to the stable reggie/flotillin caps. Importantly, a trans‐negative reggie‐1/flotillin‐2 deletion mutant, which interferes with assembly of the preformed reggie/flotillin cap, impairs raft polarization and macrodomain formation after T cell activation. Accordingly, expression of the trans‐negative reggie‐1 mutant leads to the incorrect positioning of the guanine nucleotide exchange factor Vav, resulting in defects in cytoskeletal reorganization. Thus, the preformed reggie/flotillin caps are stable priming platforms for the assembly of multiprotein complexes controlling actin reorganization during T cell activation.
BMC Evolutionary Biology | 2009
Markus Hinderhofer; Christina A Walker; Anke Friemel; Claudia A. O. Stuermer; Heiko M. Möller; Alexander Reuter
BackgroundThe SPFH protein superfamily is a diverse family of proteins whose eukaryotic members are involved in the scaffolding of detergent-resistant microdomains. Recently the origin of the SPFH proteins has been questioned. Instead, convergent evolution has been proposed. However, an independent, convergent evolution of three large prokaryotic and three eukaryotic families is highly unlikely, especially when other mechanisms such as lateral gene transfer which could also explain their distribution pattern have not yet been considered.To gain better insight into this very diverse protein family, we have analyzed the genomes of 497 microorganisms and investigated the pattern of occurrence as well as the genomic vicinity of the prokaryotic SPFH members.ResultsAccording to sequence and operon structure, a clear division into 12 subfamilies was evident. Three subfamilies (SPFH1, SPFH2 and SPFH5) show a conserved operon structure and two additional subfamilies are linked to those three through functional aspects (SPFH1, SPFH3, SPFH4: interaction with FtsH protease). Therefore these subgroups most likely share common ancestry. The complex pattern of occurrence among the different phyla is indicative of lateral gene transfer. Organisms that do not possess a single SPFH protein are almost exclusively endosymbionts or endoparasites.ConclusionThe conserved operon structure and functional similarities suggest that at least 5 subfamilies that encompass almost 75% of all prokaryotic SPFH members share a common origin. Their similarity to the different eukaryotic SPFH families, as well as functional similarities, suggests that the eukaryotic SPFH families originated from different prokaryotic SPFH families rather than one. This explains the difficulties in obtaining a consistent phylogenetic tree of the eukaryotic SPFH members. Phylogenetic evidence points towards lateral gene transfer as one source of the very diverse patterns of occurrence in bacterial species.The SPFH protein superfamily is a diverse family of proteins whose eukaryotic members are involved in the scaffolding of detergent-resistant microdomains. Recently the origin of the SPFH proteins has been questioned. Instead, convergent evolution has been proposed. However, an independent, convergent evolution of three large prokaryotic and three eukaryotic families is highly unlikely, especially when other mechanisms such as lateral gene transfer which could also explain their distribution pattern have not yet been considered. To gain better insight into this very diverse protein family, we have analyzed the genomes of 497 microorganisms and investigated the pattern of occurrence as well as the genomic vicinity of the prokaryotic SPFH members. According to sequence and operon structure, a clear division into 12 subfamilies was evident. Three subfamilies (SPFH1, SPFH2 and SPFH5) show a conserved operon structure and two additional subfamilies are linked to those three through functional aspects (SPFH1, SPFH3, SPFH4: interaction with FtsH protease). Therefore these subgroups most likely share common ancestry. The complex pattern of occurrence among the different phyla is indicative of lateral gene transfer. Organisms that do not possess a single SPFH protein are almost exclusively endosymbionts or endoparasites. The conserved operon structure and functional similarities suggest that at least 5 subfamilies that encompass almost 75% of all prokaryotic SPFH members share a common origin. Their similarity to the different eukaryotic SPFH families, as well as functional similarities, suggests that the eukaryotic SPFH families originated from different prokaryotic SPFH families rather than one. This explains the difficulties in obtaining a consistent phylogenetic tree of the eukaryotic SPFH members. Phylogenetic evidence points towards lateral gene transfer as one source of the very diverse patterns of occurrence in bacterial species.
Cellular and Molecular Life Sciences | 2004
Alexander Reuter; U. Binkle; Claudia A. O. Stuermer; Helmut Plattner
A new model of caveolin association with lipid body cores has recently been proposed which may be relevant to a number of cellular processes, e.g. lipid body generation. Here we show that PrPc and reggie-1 and reggie-2 also occur in the cores of Nile Red/Bodipy-stained (neutral lipid-containing) vesicular structures and, in immunoblots, in the lipid-enriched fraction after density gradient centrifugation. These lipid-rich vesicles increase in number following cell feeding with oleic acid, differ from early endosome antigen 1- and Lamp-2-positive endosomes/lysosomes, exhibit an opaque content and lack surrounding actin staining. Our results suggest that the content of these vesicles, together with reggie-1 and -2 and PrPc, is expelled.
Molecular and Cellular Neuroscience | 2003
Soeren-Oliver Deininger; Lawrence Rajendran; Friedrich Lottspeich; Michael Przybylski; Harald Illges; Claudia A. O. Stuermer; Alexander Reuter
During regeneration, retinal ganglion cell axons in fish upregulate a cell surface protein that is recognized by the monoclonal antibody (mAB) M802. M802 antigen appeared to be linked to the intracellular, membrane-associated lipid raft/microdomain proteins reggie-1 and reggie-2 that were previously shown to be reexpressed in axon-regenerating neurons [Development 124 (1997), 577]. Here, we report the isolation of the M802 antigen and its identification as the teleost homolog of mammalian Thy-1. Fish Thy-1 is detected in the same detergent-insoluble lipid raft fractions from a fibroblast cell line and from axon regenerating retinae as reggie-1 and 2. Importantly, mAB M802 coimmunoprecipitates reggie-1 and 2 from this lipid raft fraction, implying that fish Thy-1 and reggies interact. This correlates with their colocalization in growing cell processes after M802 antigen/Thy-1 activation with mAB M802. These findings suggest a role of clustered M802 antigen/Thy-1 in reggie raft microdomains for cell growth and axon regeneration.
Mechanisms of Development | 2002
Hua Shen; Harald Illges; Alexander Reuter; Claudia A. O. Stuermer
Caenorhabditis elegans UNC-40, Drosophila Frazzled, and vertebrate Neogenin and DCC constitute a subgroup of the immunoglobulin superfamily (IgSF). They possess four immunoglobulin-like domains and six fibronectin-type III repeats at the extracellular region, a single transmembrane region, and a approximately 300 amino-acid intracellular region. UNC-40, Frazzled and DCC can function in axon guidance as the receptor of Netrin (Cell Mol. Life Sci. 56 (1999) 62; Curr. Opin. Cell Biol. 10 (1998) 609). Neogenin binds to Netrin-1 with the same affinity as DCC in vitro (Cell 87 (1996) 175), and is expressed by neurons as they project axons (J. Cell Biol. 127 (1994) 2009), suggesting that it is also a DCC-like Netrin receptor. A zebrafish homologue of DCC (zDCC) is reported recently (Mech. Dev. 109 (2001) 105), but so far there is no report of zebrafish Neogenin. To elucidate a possible neural function of vertebrate Neogenin, we cloned and characterized a zebrafish homologue of neogenin, zneo1, and identified four alternative splice sites within it. In the adult, despite broad tissue distribution, our reverse transcription polymerase chain reaction and Northern analyses demonstrated the dominant expression of zneo1 mRNA in brain. We detected zneo1 mRNA in the embryos from 10 hpf onward and revealed its spatiotemporally regulated expression pattern in both neuronal and non-neuronal tissues by in situ hybridization. Our data showed that during early brain development, zneo1 mRNA was not only present in the proliferative ventricular zones but also in the domains of several first postmitotic neuron clusters when they extended axons. Alternative splicing generates several isoforms of zneo1. Most of them are developmentally regulated, showing distinct distribution in brain and other tissues.
Molecular Biology and Evolution | 2011
Aleksandra Shypitsyna; Edward Málaga-Trillo; Alexander Reuter; Claudia A. O. Stuermer
Unlike mammals, fish are able to regenerate axons in their central nervous system. This difference has been partly attributed to the loss/acquisition of inhibitory proteins during evolution. Nogo-A--the longest isoform of the reticulon4 (rtn4) gene product--is commonly found in mammalian myelin where it acts as a potent inhibitor of axonal regeneration. Interestingly, fish RTN4 isoforms were previously reported to lack the most inhibitory Nogo-A-specific region (NSR). Nevertheless, fish axons collapse on contact with mammalian NSR, suggesting that fish possess a functional Nogo-A receptor but not its ligand. To reconcile these findings, we revisited the early evolution of rtn4. Mining of current genome databases established the unequivocal presence of NSR-coding sequences in fish rtn4 paralogues. Further comparative analyses indicate that the common ancestor of fish and tetrapods had an NSR-coding rtn4 gene, which underwent duplication and divergent evolution in bony fish. Our genomic survey also revealed that the cephalochordate Branchiostoma floridae contains a single rtn gene lacking the NSR. Hence, Nogo-A most probably arose independently in the rtn4 gene of a gnathostome ancestor before the split of the fish and tetrapod lineages. Close examination of the NSR uncovered clusters of structural and sequential similarities with neurocan (NCAN), an inhibitory proteoglycan of the glial scar. Notably, the shared presence of transposable elements in ncan and rtn4 genes suggests that Nogo-A originated via insertion of an ncan-like sequence into the rtn4 gene of an early jawed vertebrate with myelinated axons.
Eukaryotic Cell | 2013
Alexander Reuter; Claudia A. O. Stuermer; Helmut Plattner
ABSTRACT The SPFH protein superfamily is assumed to occur universally in eukaryotes, but information from protozoa is scarce. In the Paramecium genome, we found only Stomatins, 20 paralogs grouped in 8 families, STO1 to STO8. According to cDNA analysis, all are expressed, and molecular modeling shows the typical SPFH domain structure for all subgroups. For further analysis we used family-specific sequences for fluorescence and immunogold labeling, gene silencing, and functional tests. With all family members tested, we found a patchy localization at/near the cell surface and on vesicles. The Sto1p and Sto4p families are also associated with the contractile vacuole complex. Sto4p also makes puncta on some food vacuoles and is abundant on vesicles recycling from the release site of spent food vacuoles to the site of nascent food vacuole formation. Silencing of the STO1 family reduces mechanosensitivity (ciliary reversal upon touching an obstacle), thus suggesting relevance for positioning of mechanosensitive channels in the plasmalemma. Silencing of STO4 members increases pulsation frequency of the contractile vacuole complex and reduces phagocytotic activity of Paramecium cells. In summary, Sto1p and Sto4p members seem to be involved in positioning specific superficial and intracellular microdomain-based membrane components whose functions may depend on mechanosensation (extracellular stimuli and internal osmotic pressure).