Edward Málaga-Trillo
University of Konstanz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward Málaga-Trillo.
PLOS Biology | 2009
Edward Málaga-Trillo; Gonzalo P. Solis; Yvonne Schrock; Corinna Geiss; Lydia Luncz; Venus Thomanetz; Claudia A. O. Stuermer
Prion proteins (PrPs) are key players in fatal neurodegenerative disorders, yet their physiological functions remain unclear, as PrP knockout mice develop rather normally. We report a strong PrP loss-of-function phenotype in zebrafish embryos, characterized by the loss of embryonic cell adhesion and arrested gastrulation. Zebrafish and mouse PrP mRNAs can partially rescue this knockdown phenotype, indicating conserved PrP functions. Using zebrafish, mouse, and Drosophila cells, we show that PrP: (1) mediates Ca+2-independent homophilic cell adhesion and signaling; and (2) modulates Ca+2-dependent cell adhesion by regulating the delivery of E-cadherin to the plasma membrane. In vivo time-lapse analyses reveal that the arrested gastrulation in PrP knockdown embryos is due to deficient morphogenetic cell movements, which rely on E-cadherin–based adhesion. Cell-transplantation experiments indicate that the regulation of embryonic cell adhesion by PrP is cell-autonomous. Moreover, we find that the local accumulation of PrP at cell contact sites is concomitant with the activation of Src-related kinases, the recruitment of reggie/flotillin microdomains, and the reorganization of the actin cytoskeleton, consistent with a role of PrP in the modulation of cell adhesion via signaling. Altogether, our data uncover evolutionarily conserved roles of PrP in cell communication, which ultimately impinge on the stability of adherens cell junctions during embryonic development.
Biochemical Journal | 2007
Gonzalo P. Solis; Maja Hoegg; Christina Munderloh; Yvonne Schrock; Edward Málaga-Trillo; Eric Rivera-Milla; Claudia A. O. Stuermer
Reggie-1 and -2 proteins (flotillin-2 and -1 respectively) form their own type of non-caveolar membrane microdomains, which are involved in important cellular processes such as T-cell activation, phagocytosis and signalling mediated by the cellular prion protein and insulin; this is consistent with the notion that reggie microdomains promote protein assemblies and signalling. While it is generally known that membrane microdomains contain large multiprotein assemblies, the exact organization of reggie microdomains remains elusive. Using chemical cross-linking approaches, we have demonstrated that reggie complexes are composed of homo- and hetero-tetramers of reggie-1 and -2. Moreover, native reggie oligomers are indeed quite stable, since non-cross-linked tetramers are resistant to 8 M urea treatment. We also show that oligomerization requires the C-terminal but not the N-terminal halves of reggie-1 and -2. Using deletion constructs, we analysed the functional relevance of the three predicted coiled-coil stretches present in the C-terminus of reggie-1. We confirmed experimentally that reggie-1 tetramerization is dependent on the presence of coiled-coil 2 and, partially, of coiled-coil 1. Furthermore, since depletion of reggie-1 by siRNA (small interfering RNA) silencing induces proteasomal degradation of reggie-2, we conclude that the protein stability of reggie-2 depends on the presence of reggie-1. Our data indicate that the basic structural units of reggie microdomains are reggie homo- and hetero-tetramers, which are dependent on the presence of reggie-1.
Cellular and Molecular Life Sciences | 2006
Eric Rivera-Milla; Claudia A. O. Stuermer; Edward Málaga-Trillo
Abstract.Reggies (flotillins) are detergent-resistant microdomains involved in the scaffolding of large heteromeric complexes that signal across the plasma membrane. Based on the presence of an evolutionarily widespread motif, reggies/flotillins have been included within the SPFH (stomatin-prohibitin-flotillin-HflC/K) protein superfamily. To better understand the origin and evolution of reggie/flotillin structure and function, we searched databases for reggie/flotillin and SPFH-like proteins in organisms at the base and beyond the animal kingdom, and used the resulting dataset to compare their structural and functional domains. Our analysis shows that the SPFH grouping has little phylogenetic support, probably due to convergent evolution of its members. We also find that reggie/flotillin homologues are highly conserved among metazoans but are absent in plants, fungi and bacteria, where only proteins with ‘reggie-like’ domains can be found. However, despite their low sequence similarities, reggie/flotillin and ‘reggie-like’ domains appear to subserve related functions, suggesting that their basic biological role was acquired independently during evolution.
The Journal of Neuroscience | 2009
Christina Munderloh; Gonzalo P. Solis; Vsevolod Bodrikov; Friederike A. Jaeger; Marianne Wiechers; Edward Málaga-Trillo; Claudia A. O. Stuermer
The reggies/flotillins—proteins upregulated during axon regeneration in retinal ganglion cells (RGCs)—are scaffolding proteins of microdomains and involved in neuronal differentiation. Here, we show that reggies regulate axon regeneration in zebrafish (ZF) after optic nerve section (ONS) in vivo as well as axon/neurite extension in hippocampal and N2a neurons in vitro through signal transduction molecules modulating actin dynamics. ZF reggie-1a, -2a, and -2b downregulation by reggie-specific morpholino (Mo) antisense oligonucleotides directly after ONS significantly reduced ZF RGC axon regeneration: RGC axons from reggie Mo retinas were markedly reduced. Moreover, the number of axon-regenerating RGCs, identified by insertion of A488-coupled dextran, decreased by 69% in retinas 7 d after Mo application. At 10 and 14 d, RGCs decreased by 53 and 33%, respectively, in correlation with the gradual inactivation of the Mos. siRNA-mediated knockdown of reggie-1 and -2 inhibited the differentiation and axon/neurite extension in hippocampal and N2a neurons. N2a cells had significantly shorter filopodia, more cells had lamellipodia and fewer neurites, defects which were rescued by a reggie-1 construct without siRNA-binding sites. Furthermore, reggie knockdown strongly perturbed the balanced activation of the Rho family GTPases Rac1, RhoA, and cdc42, influenced the phosphorylation of cortactin and cofilin, the formation of the N-WASP, cortactin and Arp3 complex, and affected p38, Ras, ERK1/2 (extracellular signal-regulated kinases 1 and 2), and focal adhesion kinase activation. Thus, as suggested by their prominent re-expression after lesion, the reggies represent neuron-intrinsic factors for axon outgrowth and regeneration, being crucial for the coordinated assembly of signaling complexes regulating cytoskeletal remodeling.
The FASEB Journal | 2005
Eric Rivera-Milla; Birgit Oidtmann; Cynthia H. Panagiotidis; Michael Baier; Theodoros Sklaviadis; Rudolf W. Hoffmann; Yi Zhou; Gonzalo P. Solis; Claudia A. O. Stuermer; Edward Málaga-Trillo
Prions result from the misfolding and selective accumulation of the host‐encoded prion protein (PrP) in the brain. Despite intensive research on mammalian models, basic questions about the biological role of PrP and the evolutionary origin of prion disease remain unanswered. Following our previous identification of novel fish PrP homologues, here we generated new fish PrP sequences and performed genomic analysis to demonstrate the existence of two homologous PrP loci in bony fish, which display extensive molecular variation and are highly expressed in adult and developing fish brains. The fish PrP genomic regions contain PrP‐related loci directly downstream of each PrP locus, suggesting an independent origin of prion‐related proteins in fish and mammals. Our structural prediction analysis uncovers a conserved molecular “bauplan” for all vertebrate PrPs. The C‐ and N‐terminal protein domains have evolved independently from one another, the former having retained its basic globular structure despite high sequence divergence and the latter having undergone differential expansion‐degeneration cycles in its repetitive domains. Our evolutionary analysis redefines fundamental concepts on the functional significance of PrP domains and opens up new possibilities for the experimental analysis of prion misfolding and neurodegeneration in a non‐mammalian model like the zebrafish.
Trends in Genetics | 2003
Eric Rivera-Milla; Claudia A. O. Stuermer; Edward Málaga-Trillo
Infectious prion proteins cause neurodegenerative disease in mammals owing to the acquisition of an aberrant conformation. We cloned a Fugu rubripes gene that encodes a structurally conserved prion protein, and found rapid rates of molecular divergence among prions from different vertebrate classes, along with molecular stasis within each class. We propose that a directional trend in the evolution of prion sequence motifs associated with pathogenesis and infectivity could account for the origin of scrapie in mammals.
Journal of Molecular Evolution | 2002
Edward Málaga-Trillo; Ute Laessing; Dirk M. Lang; Axel Meyer; Claudia A. O. Stuermer
Invertebrates, tetrapod vertebrates, and fish might be expected to differ in their number of gene copies, possibly due the occurrence of genome duplication events during animal evolution. Reggie (flotillin) genes code for membrane-associated proteins involved in growth signaling in developing and regenerating axons. Until now, there appeared to be only two reggie genes in fruitflies, mammals, and fish. The aim of this research was to search for additional copies of reggie genes in fishes, since a genome duplication might have increased the gene copy number in this group. We report the presence of up to four distinct reggie genes (two reggie-1 and two reggie-2 genes) in the genomes of zebrafish and goldfish. Phylogenetic analyses show that the zebrafish and goldfish sequence pairs are orthologous, and that the additional copies could have arisen through a genome duplication in a common ancestor of bony fish. The presence of novel reggie mRNAs in fish embryos indicates that the newly discovered gene copies are transcribed and possibly expressed in the developing and regenerating nervous system. The intron/exon boundaries of the new fish genes characterized here correspond with those of human genes, both in location and phase. An evolutionary scenario for the evolution of reggie intron-exon structure, where loss of introns appears to be a distinctive trait in invertebrate reggie genes, is presented.
Gene | 2003
Rafael Zardoya; Edward Málaga-Trillo; Michael Veith; Axel Meyer
The complete nucleotide sequence (16,650 bp) of the mitochondrial genome of the salamander Mertensiella luschani (Caudata, Amphibia) was determined. This molecule conforms to the consensus vertebrate mitochondrial gene order. However, it is characterized by a long non-coding intervening sequence with two 124-bp repeats between the tRNA(Thr) and tRNA(Pro) genes. The new sequence data were used to reconstruct a phylogeny of jawed vertebrates. Phylogenetic analyses of all mitochondrial protein-coding genes at the amino acid level recovered a robust vertebrate tree in which lungfishes are the closest living relatives of tetrapods, salamanders and frogs are grouped together to the exclusion of caecilians (the Batrachia hypothesis) in a monophyletic amphibian clade, turtles show diapsid affinities and are placed as sister group of crocodiles+birds, and the marsupials are grouped together with monotremes and basal to placental mammals. The deduced phylogeny was used to characterize the molecular evolution of vertebrate mitochondrial proteins. Amino acid frequencies were analyzed across the main lineages of jawed vertebrates, and leucine and cysteine were found to be the most and least abundant amino acids in mitochondrial proteins, respectively. Patterns of amino acid replacements were conserved among vertebrates. Overall, cartilaginous fishes showed the least variation in amino acid frequencies and replacements. Constancy of rates of evolution among the main lineages of jawed vertebrates was rejected.
Prion | 2009
Edward Málaga-Trillo; Emily Sempou
The best known attribute of the prion protein (PrP) is its tendency to misfold into a rogue isoform. Much less understood is how this misfolded isoform causes deadly brain illnesses. Although neurodegeneration in prion disease is often seen as the result of abnormal PrP function, amazingly little is known about the normal, physiological role of PrP. In particular, the absence of obvious phenotypes in PrP knockout mice has prevented scientists from answering this important question. Using knockdown approaches, we previously produced clear PrP loss-of-function phenotypes in zebrafish. Analysis of these phenotypes revealed that PrP can modulate E-cadherin-based cell adhesion, thereby controlling essential morphogenetic cell movements in the early embryo. Our data also showed that PrP itself can elicit homophilic cell-cell adhesion and trigger intracellular signaling via Src-related kinases. Here we discuss the use of the zebrafish in prion biology, and how these findings may advance our understanding of the roles of PrP in health and disease.
Biochimica et Biophysica Acta | 2011
Edward Málaga-Trillo; Evgenia Salta; Antonio Figueras; Cynthia H. Panagiotidis; Theodoros Sklaviadis
Transmissible spongiform encephalopathies (TSEs), otherwise known as prion disorders, are fatal diseases causing neurodegeneration in a wide range of mammalian hosts, including humans. The causative agents - prions - are thought to be composed of a rogue isoform of the endogenous prion protein (PrP). Beyond these and other basic concepts, fundamental questions in prion biology remain unanswered, such as the physiological function of PrP, the molecular mechanisms underlying prion pathogenesis, and the origin of prions. To date, the occurrence of TSEs in lower vertebrates like fish and birds has received only limited attention, despite the fact that these animals possess bona fide PrPs. Recent findings, however, have brought fish before the footlights of prion research. Fish models are beginning to provide useful insights into the roles of PrP in health and disease, as well as the potential risk of prion transmission between fish and mammals. Although still in its infancy, the use of fish models in TSE research could significantly improve our basic understanding of prion diseases, and also help anticipate risks to public health. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.