Alexander Schaible
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Schaible.
Journal of Tissue Engineering and Regenerative Medicine | 2016
Dirk Henrich; Caroline Seebach; Christoph Nau; S. Basan; Borna Relja; Kerstin Wilhelm; Alexander Schaible; Johannes Frank; John H. Barker; Ingo Marzi
The Masquelet induced membrane technique for reconstructing large diaphyseal defects has been shown to be a promising clinical treatment, yet relatively little is known about the cellular, histological and biochemical make‐up of these membranes and how they produce this positive clinical outcome. We compared cellular make‐up, histological changes and growth factor expression in membranes induced around femur bone defects and in subcutaneous pockets at 2, 4 and 6 weeks after induction, and to the periosteum. We found that membranes formed around bone defects were similar to those formed in subcutaneous pockets; however, both were significantly different from periosteum with regard to structural characteristics, location of blood vessels and overall thickness. Membranes induced at the femur defect (at 2 weeks) and in periosteum contain mesenchymal stem cells (MSCs; STRO‐1+) which were not found in membranes induced subcutaneously. BMP‐2, TGFβ and VEGF were significantly elevated in membranes induced around femur defects in comparison to subcutaneously induced membranes, whereas SDF‐1 was not detectable in membranes induced at either site. We found that osteogenic and neovascular activity had mostly subsided by 6 weeks in membranes formed at both sites. It was conclude that cellular composition and growth factor content in induced membranes depends on the location where the membrane is induced and differs from periosteum. Osteogenic and neovascular activity in the membranes is maximal between 2 and 4 weeks and subsides after 6. Based on this, better and quicker bone healing might be achieved if the PMMA cement were replaced with a bone graft earlier in the Masquelet technique. Copyright
PLOS ONE | 2013
Karam Eldesoqi; Caroline Seebach; Christina Nguyen Ngoc; Simon Meier; Christoph Nau; Alexander Schaible; Ingo Marzi; Dirk Henrich
Early vascularization is a prerequisite for successful bone healing and endothelial progenitor cells (EPC), seeded on appropriate biomaterials, can improve vascularization. The type of biomaterial influences EPC function with bioglass evoking a vascularizing response. In this study the influence of a composite biomaterial based on polylactic acid (PLA) and either 20 or 40% bioglass, BG20 and BG40, respectively, on the differentiation and survival of EPCs in vitro was investigated. Subsequently, the effect of the composite material on early vascularization in a rat calvarial critical size defect model with or without EPCs was evaluated. Human EPCs were cultured with β-TCP, PLA, BG20 or BG40, and seeding efficacy, cell viability, cell morphology and apoptosis were analysed in vitro. BG40 released the most calcium, and improved endothelial differentiation and vitality best. This effect was mimicked by adding an equivalent amount of calcium to the medium and was diminished in the presence of the calcium chelator, EGTA. To analyze the effect of BG40 and EPCs in vivo, a 6-mm diameter critical size calvarial defect was created in rats (n = 12). Controls (n = 6) received BG40 and the treatment group (n = 6) received BG40 seeded with 5×105 rat EPCs. Vascularization after 1 week was significantly improved when EPCs were seeded onto BG40, compared to implanting BG40 alone. This indicates that Ca2+ release improves EPC differentiation and is useful for enhanced early vascularization in critical size bone defects.
Injury-international Journal of The Care of The Injured | 2016
Christoph Nau; Caroline Seebach; Alexander Trumm; Alexander Schaible; Kerstin Kontradowitz; Simon Meier; Hubert Buechner; Ingo Marzi; Dirk Henrich
The Masquelet technique for the treatment of large bone defects consists of a 2-stage procedure. In the first stage, a polymethylmethacrylate (PMMA) cement spacer is inserted into the bony defect of a rats femur and over a period of 2-4 weeks a membrane forms that encapsulates the defect/spacer. In a second operation the membrane is opened, the PMMA spacer is removed and the resulting cavity is filled with autologous bone. Different kinds of bone cements are available, with or without supplemental antibiotics. Both might influence the development and the characteristics of the induced membrane which might affect the bone healing response. Hence, this comparative study was performed to elucidate the effect of different bone cements with or without supplemental antibiotics on the development of an induced membrane in a critical size femur defect model in rats. A total of 72 male SD rats received a 10mm critical size defect of the femur which was stabilised by a plate osteosynthesis and filled with either Palacos+Gentamycin, Copal Gentamycin+Vancomycin, Copal+Gentamycin+Clindamycin or Copal Spacem. The induced membranes were analysed after two, four and six weeks (wks) after insertion of the cement spacers (n=6/group). Paraffin embedded histological sections of the membrane were microscopically analysed for membrane thickness, elastic fibres, vascularisation and proliferation by an independent observer blinded to the group setup. The thickness of the induced membrane increased significantly from 2 wks (553 μm) to 6 wks (774 μm) in group Palacos+Gentamycin whereas membrane thickness decreased significantly in groups Copal+Gentamycin+Clindamycin (682-329 μm) and Copal Spacem (916 μm to 371 μm). The comparison between the groups revealed significantly increased membrane thickness in group Palacos+Gentamycin and Copal Gentamycin+Vancomycin in comparison to group Copal+Gentamycin+Clindamycin six weeks after induction. However, the fraction of elastic fibres was significantly increased in groups Copal+Gentamycin+Clindamycin (71%, 80%) and Copal Spacem (82%, 81%) after 2 and 4 weeks in comparison to the groups Palacos+Gentamycin (56%, 57%) and Copal Gentamycin+Vancomycin (63%, 69%). Those differences however were partly diminished after 6 wks. The ratio of immature (vWF+) to more mature (CD31+) blood vessels increased significantly in groups Palacos+Gentamycin and Copal Gentamycin+Vancomycin whereas no significant alterations were noted in groups Copal+Gentamycin+Clindamycin and Copal Spacem. For the first time we demonstrated that thickness and proportion of elastic fibres in induced membranes were influenced by the type of cement and the kind of supplemental antibiotics being used. Whether these alterations of the induced membrane have an effect on bone healing remains to be proven in future studies.
BioMed Research International | 2015
Dirk Henrich; René Verboket; Alexander Schaible; Kerstin Kontradowitz; Elsie Oppermann; Jan C. Brune; Christoph Nau; Simon Meier; Halvard Bonig; Ingo Marzi; Caroline Seebach
Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.
Tissue Engineering Part A | 2015
Caroline Seebach; Dirk Henrich; Alexander Schaible; Borna Relja; Manfred Jugold; Halvard Bonig; Ingo Marzi
UNLABELLED QUESTION/AIM: Cell-based therapy by cultivated stem cells (mesenchymal stem cells [MSC] and endothelial progenitor cells [EPC]) in a large-sized bone defect has already shown improved vascularization and new bone formation. However, these methods are clinically afflicted with disadvantages. Another heterogeneous bone marrow cell population, the so-called human bone marrow-derived mononuclear cells (BMC), has nevertheless been used clinically and showed improved vascularization in ischemic limbs or in the myocardium. For clinical use, a certified process has been established; thus, BMC were isolated from bone marrow aspirate by density gradient centrifugation, washed, cleaned, and given back to patients within several hours. This investigation tested the ability of human BMC seeded on beta-tricalcium phosphate (β-TCP) and placed into a large bone defect in rats to improve the bone healing process in vivo. METHODS Human EPC were isolated from buffy coat, and MSC or BMC, respectively, were isolated from bone marrow aspirate by density gradient centrifugation. 1.0×10(6) cells were loaded onto 750 μL β-TCP (0.7-1.4 mm). Large femoral defects (6 mm) in athymic rats were created surgically and stabilized with an internal fixateur. The remaining defects were filled with β-TCP granules alone (group 1), β-TCP+EPC/MSC (group 2), or β-TCP+BMC (group 3). After 8 weeks, histomorphometric analysis (new bone formation), radiological microcomputer tomography analysis (bony bridging), and biomechanical testing (three-point bending) were achieved. Moreover, a tumorigenicity study was performed to evaluate the safety of BMC implantation after 26 weeks. For statistical analysis, the Kruskal-Wallis test was used. RESULTS Eight weeks after implantation of EPC/MSC or BMC, respectively, we detected a more significant new bone formation compared to control. In group 2 and 3, bony bridging of the defect was seen. In the control group, more chondrocytes and osteoid were detected. In the BMC and EPC/MSC group, respectively, less chondrocytes and a significantly more advanced bone formation were observed. The biomechanical stability of the bone regenerate was significantly enhanced if BMC and EPC/MSC, respectively, were implanted compared to control. Moreover, no tumor formation was detected either macroscopically or histologically after 26 weeks of BMC implantation. DISCUSSION Implanted BMC suggest that a heterogeneous cell population may provide a powerful cellular therapeutic strategy for bone healing in a large bone defect in humans.
Journal of Molecular Medicine | 2015
Borna Relja; J. P. Horstmann; Kerstin Kontradowitz; Katrin Jurida; Alexander Schaible; Claudia Neunaber; Elsie Oppermann; Ingo Marzi
After a major trauma, IL-1β-producing capacity of monocytes is reduced. Generation of IL-1β is important for appropriate immune response after trauma and requires not only synthesis and transcription of inflammasome components but also their activation. Altered IL-1β-processing due to deregulated NLRP inflammasomes assembly is associated with several inflammatory diseases. However, the precise role of NLRP1 inflammasome in monocytes after trauma is unknown. Here, we investigated if NLRP1 inflammasome components are responsible for depressed monocyte function after trauma. We found in ex vivo in vitro assays that LPS-stimulation of CD14+-isolated monocytes from healthy volunteers (HV) results in remarkably higher capacity of the IL-1β-release compared to trauma patients (TP). During the 10-day time course, this monocyte depression was highest immediately after admission. Inflammasome activation correlating with this inflammatory response was demonstrated by enhanced protein production of cleaved IL-1β and caspase-1. Furthermore, we found that the gene expression of IL-1β, caspase-1, and ASC was comparable in TP and HV after LPS-stimulation during the 10-day course, while NLRP1 was markedly reduced in TP. We demonstrated that transfected monocytes from TP, which expressed the lacking components, were recovered in their LPS-induced IL-1β-release and that lacking of NLRP1 is responsible for the suppressed monocyte activity after trauma. The restoration of NLRP1 inflammasome suggests new mechanistic target for the recovery of dysbalanced immune reaction after trauma.Key messageSuppression in monocyte function occurs early after a major trauma or surgery.Reduced gene expression abrogates NLRP1 inflammasome assembly after trauma.Limited availability of inflammasome components may cause reduced host defense.Restoring NLRP1 in immune-suppressed monocytes recovers NLPR1 activity after trauma.Recovered inflammasome activity may improve the immune response to PAMPs/DAMPs.
Molecular Medicine Reports | 2015
Borna Relja; Nina Omid; Alexander Schaible; Mario Perl; Simon Meier; Elsie Oppermann; Mark Lehnert; Ingo Marzi
Increased local and systemic levels of interleukin (IL)-6 are associated with inflammatory processes, including neutrophil infiltration of the alveolar space, resulting in lung injury. Our previous study demonstrated the beneficial anti-inflammatory effects of acute exposure to ethanol (EtOH) in an acute in vivo model of inflammation. However, due to its side-effects, EtOH is not used clinically. In the present study, the effects of EtOH and ethyl pyruvate (EtP) as an alternative anti-inflammatory drug prior to and following application of an IL-6 stimulus on cultured A549 lung epithelial cells were compared, and it was hypothesized that treatment with EtOH and EtP reduces the inflammatory potential of the A549 cells. Time- and dose-dependent release of IL-8 from the A549 cells was observed following stimulation with IL-6. The release of IL-8 from the A549 cells was assessed following treatment with EtP (2.5-10 mM), sodium pyruvate (NaP; 10 mM) or EtOH (85-170 mM) for 1, 24 or 72 h, prior to and following IL-6 stimulation. The adhesion capacities of neutrophils to the treated A549 cells, and the expression levels of cluster of differentiation (CD)54 by the epithelial cells were measured. Treatment of the A549 cells with either EtOH or EtP significantly reduced the IL-6-induced release of IL-8. This effect was observed in the pre- and post-stimulatory conditions, which is of therapeutic importance. Similar data was revealed regarding the IL-6-induced neutrophil adhesion to the treated A549 cells, in which pre- and post-treatment with EtOH or EtP decreased the adhesion capacity, however, the results were dependent on the duration of incubation. Incubation durations of 1 and 24 h decreased the adhesion rates of neutrophils to the stimulated A549 cells, however, the reduction was only significant at 72 h post-treatment. The expression of CD54 was reduced only following treatment for 24 h with either EtOH or EtP, prior to IL-6 stimulation. Therefore, EtOH and EtP reduced the inflammatory response of lung epithelial cells, and the potential of EtP to mimic EtOH was observed in the pre- and post-treatment conditions.
Journal of Tissue Engineering and Regenerative Medicine | 2018
Maren Janko; Julian Sahm; Alexander Schaible; Jan C. Brune; Marlene Bellen; Katrin Schröder; Caroline Seebach; Ingo Marzi; Dirk Henrich
Large bone defects often pose major difficulties in orthopaedic surgery. The application of long‐term cultured stem cells combined with a scaffold lead to a significant improvement of bone healing in recent experiments but is strongly restricted by European Union law. Bone marrow mononuclear cells (BMC), however, can be isolated and transplanted within a few hours and have been proven effective in experimental models of bone healing. The effectivity of the BMC‐supported therapy might be influenced by the type of scaffold. Hence, we compared three different scaffolds serving as a carrier for BMC in a rat femoral critical size defect with regard to the osteogenic activity in the defect zone. Human demineralized bone matrix (DBM), bovine cancellous bone hydroxyapatite ceramic (BS), or β‐tricalcium phosphate (β‐TCP) were seeded with human BMC and hereafter implanted into critically sized bone defects of male athymic nude rats. Autologous bone served as a control. Gene activity was measured after 1 week, and bone formation was analysed histologically and radiologically after 8 weeks. Generally, regenerative gene expression (BMP2, RUNX2, VEGF, SDF‐1, and RANKL) as well as bony bridging and callus formation was observed to be most pronounced in defects filled with autologous bone, followed in descending order by DBM, β‐TCP, and BS. Although DBM was superior in most aspects of bone regeneration analysed in comparison to β‐TCP and BS, the level of autologous bone could not be attained.
Redox biology | 2018
Ruth Pia Duecker; Patrick C. Baer; Olaf Eickmeier; Maja Strecker; Jennifer Kurz; Alexander Schaible; Dirk Henrich; Stefan Zielen; Ralf Schubert
Lung failure is responsible for significant morbidity and is a frequent cause of death in ataxia-telangiectasia (A-T). Disturbance in the redox balance of alveolar epithelial cells must be considered as a causal factor for respiratory disease in A-T. To investigate bronchoalveolar sensitivity to reactive oxygen species (ROS) and ROS-induced DNA damage, we used bleomycin (BLM) to induce experimental inflammation and fibrotic changes in the Atm-deficient mouse model. BLM or saline was administered by oropharyngeal instillation into the lung of Atm-deficient mice and wild-type mice. Mice underwent pulmonary function testing at days 0, 9, and 28, and bronchoalveolar lavage (BAL) was analysed for cell distribution and cytokines. Lung tissue was analysed by histochemistry. BLM administration resulted in a tremendous increase in lung inflammation and fibrotic changes in the lung tissue of Atm-deficient mice and was accompanied by irreversible deterioration of lung function. ATM (ataxia telangiectasia mutated) deficiency resulted in reduced cell viability, a delay in the resolution of γH2AX expression and a significant increase in intracellular ROS in pulmonary epithelial cells after BLM treatment. This was confirmed in the human epithelial cell line A549 treated with the ATM-kinase inhibitor KU55933. Our results demonstrate high bronchoalveolar sensitivity to ROS and ROS-induced DNA damage in the Atm-deficient mouse model and support the hypothesis that ATM plays a pivotal role in the control of oxidative stress-driven lung inflammation and fibrosis.
BioMed Research International | 2015
Dirk Henrich; René Verboket; Alexander Schaible; Kerstin Kontradowitz; Elsie Oppermann; Jan C. Brune; Christoph Nau; Simon Meier; Halvard Bonig; Ingo Marzi; Caroline Seebach
In the paper titled “Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro,” [1] there was an error in the Acknowledgments. The changes made to the Acknowledgments are as follows. The AO-Research Foundation and the respective Grant no. S-11-64-N were added since the AO provided financial support to this study. Therefore the Acknowledgments was changed as follows: “This work was partially founded by the German Institute for Cell and Tissue Replacement gGmbH (DIZG), Berlin, the LOEWE Center for Cell and Gene Therapy Frankfurt funded by Hessian Ministry of Higher Education, Research and the Arts (funding reference no. III L 4-518/17.004 (2010)), and the AO-Research Fund, Davos, Switzerland (funding reference no. S-11-64-N).”