Alexander Schleiffer
Research Institute of Molecular Pathology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Schleiffer.
Science | 2010
James R. A. Hutchins; Yusuke Toyoda; Björn Hegemann; Ina Poser; Jean-Karim Hériché; Martina M. Sykora; Martina Augsburg; Otto Hudecz; Bettina A. Buschhorn; Jutta Bulkescher; Christian Conrad; David Comartin; Alexander Schleiffer; Mihail Sarov; Andrei Pozniakovsky; Mikolaj Slabicki; Siegfried Schloissnig; Ines Steinmacher; Marit Leuschner; Andrea Ssykor; Steffen Lawo; Laurence Pelletier; Holger Stark; Kim Nasmyth; Jan Ellenberg; Richard Durbin; Frank Buchholz; Karl Mechtler; Anthony A. Hyman; Jan-Michael Peters
Division Machinery Tagged An international consortium of labs has been testing the feasibility of large-scale screening for insights into the function of mammalian proteins by expressing a tagged version of proteins from bacterial artificial chromosomes harbored in mammalian cells. Depending on the tag used, Hutchins et al. (p. 593, published online 1 April) were able to monitor localization of tagged proteins by microscopy or to isolate interacting proteins and subsequently identify the binding partners by mass spectrometry. Applying the technology to proteins implicated in control of cell division revealed about 100 protein machines required for mitosis. A strategy designed to decipher the function of proteins identified in RNA interference screens reveals new insights into mitosis. Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification–mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the γ-tubulin ring complex—large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.
Cell | 2006
Stephanie Kueng; Björn Hegemann; Beate H. Peters; Jesse J. Lipp; Alexander Schleiffer; Karl Mechtler; Jan-Michael Peters
Cohesin establishes sister-chromatid cohesion from S phase until mitosis or meiosis. To allow chromosome segregation, cohesion has to be dissolved. In vertebrate cells, this process is mediated in part by the protease separase, which destroys a small amount of cohesin, but most cohesin is removed from chromosomes without proteolysis. How this is achieved is poorly understood. Here, we show that the interaction between cohesin and chromatin is controlled by Wapl, a protein implicated in heterochromatin formation and tumorigenesis. Wapl is associated with cohesin throughout the cell cycle, and its depletion blocks cohesin dissociation from chromosomes during the early stages of mitosis and prevents the resolution of sister chromatids until anaphase, which occurs after a delay. Wapl depletion also increases the residence time of cohesin on chromatin in interphase. Our data indicate that Wapl is required to unlock cohesin from a particular state in which it is stably bound to chromatin.
Science | 2010
James R. A. Hutchins; Yusuke Toyoda; Björn Hegemann; Ina Poser; Jean-Karim Hériché; Martina M. Sykora; Martina Augsburg; Otto Hudecz; Bettina A. Buschhorn; Jutta Bulkescher; Christian Conrad; David Comartin; Alexander Schleiffer; Mihail Sarov; Andrei Pozniakovsky; Mikolaj Slabicki; Siegfried Schloissnig; Ines Steinmacher; Marit Leuschner; Andrea Ssykor; Steffen Lawo; Laurence Pelletier; Holger Stark; Kim Nasmyth; Jan Ellenberg; Richard Durbin; Frank Buchholz; Karl Mechtler; Anthony A. Hyman; Jan-Michael Peters
Division Machinery Tagged An international consortium of labs has been testing the feasibility of large-scale screening for insights into the function of mammalian proteins by expressing a tagged version of proteins from bacterial artificial chromosomes harbored in mammalian cells. Depending on the tag used, Hutchins et al. (p. 593, published online 1 April) were able to monitor localization of tagged proteins by microscopy or to isolate interacting proteins and subsequently identify the binding partners by mass spectrometry. Applying the technology to proteins implicated in control of cell division revealed about 100 protein machines required for mitosis. A strategy designed to decipher the function of proteins identified in RNA interference screens reveals new insights into mitosis. Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification–mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the γ-tubulin ring complex—large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.
Cell | 2000
Attila Tóth; Kirsten P. Rabitsch; Marta Galova; Alexander Schleiffer; Sara Buonomo; Kim Nasmyth
The orderly reduction in chromosome number that occurs during meiosis depends on two aspects of chromosome behavior specific to the first meiotic division. These are the retention of cohesion between sister centromeres and their attachment to microtubules that extend to the same pole (monopolar attachment). By deleting genes that are upregulated during meiosis, we identified in Saccharomyces cerevisiae a kinetochore associated protein, Mam1 (Monopolin), which is essential for monopolar attachment. We also show that the meiosis-specific cohesin, Rec8, is essential for maintaining cohesion between sister centromeres but not for monopolar attachment. We conclude that monopolar attachment during meiosis I requires at least one meiosis-specific protein and is independent of the process that protects sister centromere cohesion.
Current Biology | 2001
Kirsten P. Rabitsch; Attila Tóth; Marta Galova; Alexander Schleiffer; Gotthold Schaffner; Elisabeth Aigner; Christian W. Rupp; Alexandra Penkner; Alexandra C. Moreno-Borchart; Michael Primig; Rochelle Easton Esposito; Franz Klein; Michael Knop; Kim Nasmyth
BACKGROUND Meiosis is the process by which gametes are generated with half the ploidy of somatic cells. This reduction is achieved by three major differences in chromosome behavior during meiosis as compared to mitosis: the production of chiasmata by recombination, the protection of centromere-proximal sister chromatid cohesion, and the monoorientation of sister kinetochores during meiosis I. Mistakes in any of these processes lead to chromosome missegregation. RESULTS To identify genes involved in meiotic chromosome behavior in Saccharomyces cerevisiae, we deleted 301 open reading frames (ORFs) which are preferentially expressed in meiotic cells according to microarray gene expression data. To facilitate the detection of chromosome missegregation mutants, chromosome V of the parental strain was marked by GFP. Thirty-three ORFs were required for the formation of wild-type asci, eight of which were needed for proper chromosome segregation. One of these (MAM1) is essential for the monoorientation of sister kinetochores during meiosis I. Two genes (MND1 and MND2) are implicated in the recombination process and another two (SMA1 and SMA2) in prospore membrane formation. CONCLUSIONS Reverse genetics using gene expression data is an effective method for identifying new genes involved in specific cellular processes.
Cell | 2010
Tomoko Nishiyama; Rene Ladurner; Julia Schmitz; Emanuel Kreidl; Alexander Schleiffer; Venugopal Bhaskara; Masashige Bando; Katsuhiko Shirahige; Anthony A. Hyman; Karl Mechtler; Jan-Michael Peters
Sister chromatid cohesion is essential for chromosome segregation and is mediated by cohesin bound to DNA. Cohesin-DNA interactions can be reversed by the cohesion-associated protein Wapl, whereas a stably DNA-bound form of cohesin is thought to mediate cohesion. In vertebrates, Sororin is essential for cohesion and stable cohesin-DNA interactions, but how Sororin performs these functions is unknown. We show that DNA replication and cohesin acetylation promote binding of Sororin to cohesin, and that Sororin displaces Wapl from its binding partner Pds5. In the absence of Wapl, Sororin becomes dispensable for cohesion. We propose that Sororin maintains cohesion by inhibiting Wapls ability to dissociate cohesin from DNA. Sororin has only been identified in vertebrates, but we show that many invertebrate species contain Sororin-related proteins, and that one of these, Dalmatian, is essential for cohesion in Drosophila. The mechanism we describe here may therefore be widely conserved among different species.
The EMBO Journal | 1999
Gabriela Alexandru; Wolfgang Zachariae; Alexander Schleiffer; Kim Nasmyth
In yeast, anaphase entry depends on Pds1 proteolysis, while chromosome re‐duplication in the subsequent S‐phase involves degradation of mitotic cyclins such as Clb2. Sequential proteolysis of Pds1 and mitotic cyclins is mediated by the anaphase‐promoting complex (APC). Lagging chromosomes or spindle damage are detected by surveillance mechanisms (checkpoints) which block anaphase onset, cytokinesis and DNA re‐replication. Until now, the MAD and BUB genes implicated in this regulation were thought to function in a single pathway that blocks APC activity. We show that spindle damage blocks sister chromatid separation solely by inhibiting APCCdc20‐dependent Pds1 proteolysis and that this process requires Mad2. Blocking APCCdh1‐mediated Clb2 proteolysis and chromosome re‐duplication does not require Mad2 but a different protein, Bub2. Our data imply that Mad1, Mad2, Mad3 and Bub1 regulate APCCdc20, whereas Bub2 regulates APCCdh1.
Molecular Cell | 2003
Alexander Schleiffer; Susanne Kaitna; Sebastian Maurer-Stroh; Michael Glotzer; Kim Nasmyth; Frank Eisenhaber
We describe a superfamily of eukaryotic and prokaryotic proteins (kleisins) that includes ScpA, Scc1, Rec8, and Barren. Scc1 interacts with SMC proteins through N- and C-terminal domains to form a ring-like structure. Since these are the only domains conserved among kleisins, we suggest that ring formation with SMC proteins may define this family.
Current Biology | 2006
Erwan Watrin; Alexander Schleiffer; Koichi Tanaka; Frank Eisenhaber; Kim Nasmyth; Jan-Michael Peters
BACKGROUND Sister-chromatid cohesion depends on the cohesin complex whose association with chromatin is mediated by Scc2 and Scc4 in budding yeast. Both cohesin and Scc2 have been conserved from yeast to humans, but no Scc4 orthologs have been identified. Mutation of Scc2 orthologs causes defects in cohesion, transcription, and development, resulting in Cornelia de Lange syndrome in humans. RESULTS We have identified a family of tetratricopeptide repeat proteins that share weak sequence similarities with yeast Scc4. This family includes MAU-2, which is required for development of the nervous system in Caenorhabditis elegans. We show that the human member of this family is associated with Scc2, is bound to chromatin from telophase until prophase, and is required for association of cohesin with chromatin during interphase. Cells lacking Scc4 lose sister-chromatid cohesion precociously and arrest in prometaphase. Mitotic chromosomes in Scc4-depleted cells lack cohesin, even though the cohesin-protecting proteins Sgo1 and Bub1 are normally enriched at centromeres and separase does not seem to be active. CONCLUSION Our data indicate that human Scc4 is required for the association of cohesin with chromatin, which is a prerequisite for the establishment of sister-chromatid cohesion and for chromosome biorientation in mitosis. The proteinaceous machinery that is required for loading of cohesin onto chromatin is therefore conserved from yeast to humans. The finding that Caenorhabditis elegans MAU-2 is an ortholog of Scc4 further supports the notion that the Scc2-Scc4 complex is required for developmental processes in metazoans.
Neuron | 2005
Mihaela Žigman; Michel Cayouette; Christoforos Charalambous; Alexander Schleiffer; Oliver Hoeller; Dara Dunican; Christopher R. McCudden; Nicole Firnberg; Ben A. Barres; David P. Siderovski; Juergen A. Knoblich
During mammalian neurogenesis, progenitor cells can divide with the mitotic spindle oriented parallel or perpendicular to the surface of the neuroepithelium. Perpendicular divisions are more likely to be asymmetric and generate one progenitor and one neuronal precursor. Whether the orientation of the mitotic spindle actually determines their asymmetric outcome is unclear. Here, we characterize a mammalian homolog of Inscuteable (mInsc), a key regulator of spindle orientation in Drosophila. mInsc is expressed temporally and spatially in a manner that suggests a role in orienting the mitotic spindle in the developing nervous system. Using retroviral RNAi in rat retinal explants, we show that downregulation of mInsc inhibits vertical divisions. This results in enhanced proliferation, consistent with a higher frequency of symmetric divisions generating two proliferating cells. Our results suggest that the orientation of neural progenitor divisions is important for cell fate specification in the retina and determines their symmetric or asymmetric outcome.