Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Sheh is active.

Publication


Featured researches published by Alexander Sheh.


Journal of Virology | 2006

Reovirus Outer Capsid Protein μ1 Induces Apoptosis and Associates with Lipid Droplets, Endoplasmic Reticulum, and Mitochondria

Caroline M. Coffey; Alexander Sheh; Irene S. Kim; Kartik Chandran; Max L. Nibert; John S. L. Parker

ABSTRACT The mechanisms by which reoviruses induce apoptosis have not been fully elucidated. Earlier studies identified the mammalian reovirus S1 and M2 genes as determinants of apoptosis induction. However, no published results have demonstrated the capacities of the proteins encoded by these genes to induce apoptosis, either independently or in combination, in the absence of reovirus infection. Here we report that the mammalian reovirus μ1 protein, encoded by the M2 gene, was sufficient to induce apoptosis in transfected cells. We also found that μ1 localized to lipid droplets, endoplasmic reticulum, and mitochondria in both transfected cells and infected cells. Two small regions encompassing amphipathic α-helices within a carboxyl-terminal portion of μ1 were necessary for efficient induction of apoptosis and association with lipid droplets, endoplasmic reticulum, and mitochondria in transfected cells. Induction of apoptosis by μ1 and its association with lipid droplets and intracellular membranes in transfected cells were abrogated whenμ 1 was coexpressed with σ3, with which it is known to coassemble. We propose that μ1 plays a direct role in the induction of apoptosis in infected cells and that this property may relate to the capacity of μ1 to associate with intracellular membranes. Moreover, during reovirus infection, association with σ3 may regulate apoptosis induction byμ 1.


Gut microbes | 2013

The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis

Alexander Sheh; James G. Fox

The discovery of Helicobacter pylori overturned the conventional dogma that the stomach was a sterile organ and that pH values < 4 were capable of sterilizing the stomach. H. pylori are an etiological agent associated with gastritis, hypochlorhydria, duodenal ulcers, and gastric cancer. It is now appreciated that the human stomach supports a bacterial community with possibly 100s of bacterial species that influence stomach homeostasis. Other bacteria colonizing the stomach may also influence H. pylori-associated gastric pathogenesis by creating reactive oxygen and nitrogen species and modulating inflammatory responses. In this review, we summarize the available literature concerning the gastric microbiota in humans, mice, and Mongolian gerbils. We also discuss the gastric perturbations, many involving H. pylori, that facilitate the colonization by bacteria from other compartments of the gastrointestinal tract, and identify risk factors known to affect gastric homeostasis that contribute to changes in the microbiota.


Cancer Prevention Research | 2011

17β-Estradiol and Tamoxifen Prevent Gastric Cancer by Modulating Leukocyte Recruitment and Oncogenic Pathways in Helicobacter Pylori–Infected INS-GAS Male Mice

Alexander Sheh; Zhongming Ge; Nicola Parry; Sureshkumar Muthupalani; Julia E. Rager; Arkadiusz R. Raczynski; Melissa W. Mobley; Amanda McCabe; Rebecca C. Fry; Timothy C. Wang; James G. Fox

Helicobacter pylori infection promotes male predominant gastric adenocarcinoma in humans. Estrogens reduce gastric cancer risk and previous studies showed that prophylactic 17β-estradiol (E2) in INS-GAS mice decreases H. pylori–induced carcinogenesis. We examined the effect of E2 and tamoxifen (TAM) on H. pylori–induced gastric cancer in male and female INS-GAS mice. After confirming robust gastric pathology at 16 weeks postinfection (WPI), mice were implanted with E2, TAM, both E2 and TAM, or placebo pellets for 12 weeks. At 28 WPI, gastric histopathology, gene expression, and immune cell infiltration were evaluated and serum inflammatory cytokines measured. After treatment, no gastric cancer was observed in H. pylori–infected males receiving E2 and/or TAM, whereas 40% of infected untreated males developed gastric cancer. E2, TAM, and their combination significantly reduced gastric precancerous lesions in infected males compared with infected untreated males (P < 0.001, 0.01, and 0.01, respectively). However, TAM did not alter female pathology regardless of infection status. Differentially expressed genes from males treated with E2 or TAM (n = 363 and n = 144, Q < 0.05) associated highly with cancer and cellular movement, indicating overlapping pathways in the reduction of gastric lesions. E2 or TAM deregulated genes associated with metastasis (PLAUR and MMP10) and Wnt inhibition (FZD6 and SFRP2). Compared with controls, E2 decreased gastric mRNA (Q < 0.05) and serum levels (P < 0.05) of CXCL1, a neutrophil chemokine, leading to decreased neutrophil infiltration (P < 0.01). Prevention of H. pylori–induced gastric cancer by E2 and TAM may be mediated by estrogen signaling and is associated with decreased CXCL1, decreased neutrophil counts, and downregulation of oncogenic pathways. Cancer Prev Res; 4(9); 1426–35. ©2011 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mutagenic potency of Helicobacter pylori in the gastric mucosa of mice is determined by sex and duration of infection

Alexander Sheh; Chung-Wei Lee; Ken-ichi Masumura; Barry H. Rickman; Takehiko Nohmi; Gerald N. Wogan; James G. Fox; David B. Schauer

Helicobacter pylori is a human carcinogen, but the mechanisms evoked in carcinogenesis during this chronic inflammatory disease remain incompletely characterized. We determined whether chronic H. pylori infection induced mutations in the gastric mucosa of male and female gpt delta C57BL/6 mice infected for 6 or 12 mo. Point mutations were increased in females infected for 12 mo. The mutation frequency in this group was 1.6-fold higher than in uninfected mice of both sexes (P < 0.05). A:T-to-G:C transitions and G:C-to-T:A transversions were 3.8 and 2.0 times, respectively, more frequent in this group than in controls. Both mutations are consistent with DNA damage induced by oxidative stress. No increase in the frequency of deletions was observed. Females had more severe gastric lesions than males at 6 mo postinfection (MPI; P < 0.05), but this difference was absent at 12 MPI. In all mice, infection significantly increased expression of IFNγ, IL-17, TNFα, and iNOS at 6 and 12 mo, as well as H. pylori–specific IgG1 levels at 12 MPI (P < 0.05) and IgG2c levels at 6 and 12 MPI (P < 0.01 and P < 0.001). At 12 MPI, IgG2c levels in infected females were higher than at 6 MPI (P < 0.05) and also than those in infected males at 12 MPI (P < 0.05). Intensity of responses was mediated by sex and duration of infection. Lower H. pylori colonization indicated a more robust host response in females than in males. Earlier onset of severe gastric lesions and proinflammatory, Th1-biased responses in female C57BL/6 mice may have promoted mutagenesis by exposing the stomach to prolonged oxidative stress.


Infection and Immunity | 2013

Phylogeographic Origin of Helicobacter pylori Determines Host-Adaptive Responses upon Coculture with Gastric Epithelial Cells

Alexander Sheh; Rupesh Chaturvedi; D. Scott Merrell; Pelayo Correa; Keith T. Wilson; James G. Fox

ABSTRACT While Helicobacter pylori infects over 50% of the worlds population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors in H. pylori pathogenesis, global gene expression of six H. pylori isolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factors cagA, vacA, and babB and were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin of H. pylori strains may promote increased gastric disease.


Genome Announcements | 2014

Draft Genome Sequences of Six Enterohepatic Helicobacter Species Isolated from Humans and One from Rhesus Macaques

Zeli Shen; Alexander Sheh; Sarah K. Young; Amr Abouelliel; Doyle V. Ward; Ashlee M. Earl; James G. Fox

ABSTRACT Draft genome sequences of seven enterohepatic Helicobacter species, H. bilis, H. canadensis, H. canis, H. cinaedi, H. winghamensis, H. pullorum, and H. macacae, are presented. These isolates were obtained from clinical patients and a nonhuman primate. Due to potential zoonotic risks, we characterized antibiotic resistance markers and Helicobacter virulence factors.


PLOS ONE | 2014

Helicobacter hepaticus Infection Promotes Hepatitis and Preneoplastic Foci in Farnesoid X Receptor (FXR) Deficient Mice

Alton G. Swennes; Alexander Sheh; Nicola Parry; Sureshkumar Muthupalani; Kvin Lertpiriyapong; Alexis García; James G. Fox

Farnesoid X receptor (FXR) is a nuclear receptor that regulates bile acid metabolism and transport. Mice lacking expression of FXR (FXR KO) have a high incidence of foci of cellular alterations (FCA) and liver tumors. Here, we report that Helicobacter hepaticus infection is necessary for the development of increased hepatitis scores and FCA in previously Helicobacter-free FXR KO mice. FXR KO and wild-type (WT) mice were sham-treated or orally inoculated with H. hepaticus. At 12 months post-infection, mice were euthanized and liver pathology, gene expression, and the cecal microbiome were analyzed. H. hepaticus induced significant increases hepatitis scores and FCA numbers in FXR KO mice (P<0.01 and P<0.05, respectively). H. hepaticus altered the beta diversity of cecal microbiome in both WT and FXR KO mice compared to uninfected mice (P<0.05). Significant upregulation of β-catenin, Rela, Slc10a1, Tlr2, Nos2, Vdr, and Cyp3a11 was observed in all FXR KO mice compared to controls (P<0.05). Importantly, H. hepaticus and FXR deficiency were necessary to significantly upregulate Cyp2b10 (P<0.01). FXR deficiency was also a potent modulator of the cecal microbiota, as observed by a strong decrease in alpha diversity. A significant decrease in Firmicutes, particularly members of the order Clostridiales, was observed in FXR KO mice (P<0.05 and FDR<5%, ANOVA). While FXR deficiency strongly affects expression of genes related to immunity and bile acid metabolism, as well as the composition of the microbiome; however, its deficiency was not able to produce significant histopathological changes in the absence of H. hepaticus infection.


Infection and Immunity | 2016

Helicobacter saguini, a Novel Helicobacter Isolated from Cotton-Top Tamarins with Ulcerative Colitis, Has Proinflammatory Properties and Induces Typhlocolitis and Dysplasia in Gnotobiotic IL-10−/− Mice

Zeli Shen; Anthony Mannion; Mark T. Whary; Sureshkumar Muthupalani; Alexander Sheh; Yan Feng; Guanyu Gong; Peter Vandamme; Hr Holcombe; Bruce J. Paster; James G. Fox

ABSTRACT A urease-negative, fusiform, novel bacterium named Helicobacter saguini was isolated from the intestines and feces of cotton-top tamarins (CTTs) with chronic colitis. Helicobacter sp. was detected in 69% of feces or intestinal samples from 116 CTTs. The draft genome sequence, obtained by Illumina MiSeq sequencing, for H. saguini isolate MIT 97-6194-5, consisting of ∼2.9 Mb with a G+C content of 35% and 2,704 genes, was annotated using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline. H. saguini contains homologous genes of known virulence factors found in other enterohepatic helicobacter species (EHS) and H. pylori. These include flagellin, γ-glutamyl transpeptidase (ggt), collagenase, the secreted serine protease htrA, and components of a type VI secretion system, but the genome does not harbor genes for cytolethal distending toxin (cdt). H. saguini MIT 97-6194-5 induced significant levels of interleukin-8 (IL-8) in HT-29 cell culture supernatants by 4 h, which increased through 24 h. mRNAs for the proinflammatory cytokines IL-1β, tumor necrosis factor alpha (TNF-α), IL-10, and IL-6 and the chemokine CXCL1 were upregulated in cocultured HT-29 cells at 4 h compared to levels in control cells. At 3 months postinfection, all H. saguini-monoassociated gnotobiotic C57BL/129 IL-10−/− mice were colonized and had seroconverted to H. saguini antigen with a significant Th1-associated increase in IgG2c (P < 0.0001). H. saguini induced a significant typhlocolitis, associated epithelial defects, mucosa-associated lymphoid tissue (MALT) hyperplasia, and dysplasia. Inflammatory cytokines IL-22, IL-17a, IL-1β, gamma interferon (IFN-γ), and TNF-α, as well as inducible nitric oxide synthase (iNOS) were significantly upregulated in the cecal tissues of infected mice. The expression of the DNA damage response molecule γ-H2AX was significantly higher in the ceca of H. saguini-infected gnotobiotic mice than in the controls. This model using a nonhuman primate Helicobacter sp. can be used to study the pathogenic potential of EHS isolated from primates with naturally occurring inflammatory bowel disease (IBD) and colon cancer.


Genome Announcements | 2013

Draft Genome Sequences of Helicobacter pylori Strains Isolated from Regions of Low and High Gastric Cancer Risk in Colombia

Alexander Sheh; M. Blanca Piazuelo; Keith T. Wilson; Pelayo Correa; James G. Fox

ABSTRACT The draft genome sequences of six Colombian Helicobacter pylori strains are presented. These strains were isolated from patients from regions of high and low gastric cancer risk in Colombia and were characterized by multilocus sequence typing. The data provide insights into differences between H. pylori strains of different phylogeographic origins.


Genome Announcements | 2014

Draft Genome Sequences of Eight Enterohepatic Helicobacter Species Isolated from Both Laboratory and Wild Rodents

Alexander Sheh; Zeli Shen; James G. Fox

ABSTRACT The draft genome sequences of eight enterohepatic Helicobacter species, H. muridarum, H. trogontum, H. typhlonius, and five unnamed helicobacters, are presented here. Using laboratory mice pervasively infected with helicobacters, we characterized the presence of known virulence factors.

Collaboration


Dive into the Alexander Sheh's collaboration.

Top Co-Authors

Avatar

James G. Fox

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sureshkumar Muthupalani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicola Parry

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yan Feng

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zeli Shen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Guanyu Gong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhongming Ge

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Chuanwu Wang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Mannion

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge