Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sureshkumar Muthupalani is active.

Publication


Featured researches published by Sureshkumar Muthupalani.


Cell | 2015

Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

Daniel L. Worthley; Michael Churchill; Jocelyn T. Compton; Yagnesh Tailor; Meenakshi Rao; Yiling Si; Daniel E. Levin; Matthew G. Schwartz; Aysu Uygur; Yoku Hayakawa; Stefanie Gross; Bernhard W. Renz; Wanda Setlik; Ashley N. Martinez; Xiaowei Chen; Saqib Nizami; Heon Goo Lee; H. Paco Kang; Jon-Michael Caldwell; Samuel Asfaha; C. Benedikt Westphalen; Trevor A. Graham; Guangchun Jin; Karan Nagar; Hongshan Wang; Mazen A. Kheirbek; Alka Kolhe; Jared Carpenter; Mark A. Glaire; Abhinav Nair

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Gastroenterology | 2011

Lack of Commensal Flora in Helicobacter pylori–Infected INS-GAS Mice Reduces Gastritis and Delays Intraepithelial Neoplasia

Jennifer L. Lofgren; Mark T. Whary; Zhongming Ge; Sureshkumar Muthupalani; Nancy S. Taylor; Melissa W. Mobley; Amanda Potter; Andrea Varro; Daniel Eibach; Sebastian Suerbaum; Timothy C. Wang; James G. Fox

BACKGROUND & AIMS Transgenic FVB/N insulin-gastrin (INS-GAS) mice have high circulating gastrin levels, and develop spontaneous atrophic gastritis and gastrointestinal intraepithelial neoplasia (GIN) with 80% prevalence 6 months after Helicobacter pylori infection. GIN is associated with gastric atrophy and achlorhydria, predisposing mice to nonhelicobacter microbiota overgrowth. We determined if germfree INS-GAS mice spontaneously develop GIN and if H pylori accelerates GIN in gnotobiotic INS-GAS mice. METHODS We compared gastric lesions, levels of messenger RNA, serum inflammatory mediators, antibodies, and gastrin among germfree and H pylori-monoinfected INS-GAS mice. Microbiota composition of specific pathogen-free (SPF) INS-GAS mice was quantified by pyrosequencing. RESULTS Germfree INS-GAS mice had mild hypergastrinemia but did not develop significant gastric lesions until 9 months old and did not develop GIN through 13 months. H pylori monoassociation caused progressive gastritis, epithelial defects, oxyntic atrophy, marked foveolar hyperplasia, dysplasia, and robust serum and tissue proinflammatory immune responses (particularly males) between 5 and 11 months postinfection (P<0.05, compared with germfree controls). Only 2 of 26 female, whereas 8 of 18 male, H pylori-infected INS-GAS mice developed low to high-grade GIN by 11 months postinfection. Stomachs of H pylori-infected SPF male mice had significant reductions in Bacteroidetes and significant increases in Firmicutes. CONCLUSIONS Gastric lesions take 13 months longer to develop in germfree INS-GAS mice than male SPF INS-GAS mice. H pylori monoassociation accelerated gastritis and GIN but caused less severe gastric lesions and delayed onset of GIN compared with H pylori-infected INS-GAS mice with complex gastric microbiota. Changes in gastric microbiota composition might promote GIN in achlorhydric stomachs of SPF mice.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer

Aswin Mangerich; Charles G. Knutson; Nicola Parry; Sureshkumar Muthupalani; Wenjie Ye; Erin G. Prestwich; Liang Cui; Jose Luis McFaline; Melissa W. Mobley; Zhongming Ge; Koli Taghizadeh; John S. Wishnok; Gerald N. Wogan; James G. Fox; Steven R. Tannenbaum; Peter C. Dedon

Helicobacter hepaticus-infected Rag2-/- mice emulate many aspects of human inflammatory bowel disease, including the development of colitis and colon cancer. To elucidate mechanisms of inflammation-induced carcinogenesis, we undertook a comprehensive analysis of histopathology, molecular damage, and gene expression changes during disease progression in these mice. Infected mice developed severe colitis and hepatitis by 10 wk post-infection, progressing into colon carcinoma by 20 wk post-infection, with pronounced pathology in the cecum and proximal colon marked by infiltration of neutrophils and macrophages. Transcriptional profiling revealed decreased expression of DNA repair and oxidative stress response genes in colon, but not in liver. Mass spectrometric analysis revealed higher levels of DNA and RNA damage products in liver compared to colon and infection-induced increases in 5-chlorocytosine in DNA and RNA and hypoxanthine in DNA. Paradoxically, infection was associated with decreased levels of DNA etheno adducts. Levels of nucleic acid damage from the same chemical class were strongly correlated in both liver and colon. The results support a model of inflammation-mediated carcinogenesis involving infiltration of phagocytes and generation of reactive species that cause local molecular damage leading to cell dysfunction, mutation, and cell death. There are strong correlations among histopathology, phagocyte infiltration, and damage chemistry that suggest a major role for neutrophils in inflammation-associated cancer progression. Further, paradoxical changes in nucleic acid damage were observed in tissue- and chemistry-specific patterns. The results also reveal features of cell stress response that point to microbial pathophysiology and mechanisms of cell senescence as important mechanistic links to cancer.


Science Translational Medicine | 2014

Denervation suppresses gastric tumorigenesis.

Chun-Mei Zhao; Yoku Hayakawa; Yosuke Kodama; Sureshkumar Muthupalani; Christoph B. Westphalen; Gøran Andersen; Arnar Flatberg; Helene Johannessen; Richard A. Friedman; Bernhard W. Renz; Arne K. Sandvik; Vidar Beisvag; Hiroyuki Tomita; Akira Hara; Michael Quante; Zhishan Li; Michael D. Gershon; Kazuhiro Kaneko; James G. Fox; Timothy C. Wang; Duan Chen

Surgical or pharmacologic interruption of muscarinic innervation to the stomach suppresses gastric tumor growth in mice and humans. Treating Cancer by Getting on Its Nerves The nervous system plays a role in the regulation of many different organs, including the gut. Now, Zhao et al. have shown that the vagal nerve, which signals to the stomach through muscarinic receptors, contributes to the growth of gastric tumors. The authors demonstrated that vagotomy (surgical interruption of the vagal nerve) can prevent gastric cancer in mice and reduce the recurrence of gastric tumors in human patients. Moreover, the same result can be achieved in mice treated with Botox or anticholinergic drugs to inhibit vagal nerve signaling, raising the hope of a safer treatment for gastric cancer without irreversible side effects. The nervous system plays an important role in the regulation of epithelial homeostasis and has also been postulated to play a role in tumorigenesis. We provide evidence that proper innervation is critical at all stages of gastric tumorigenesis. In three separate mouse models of gastric cancer, surgical or pharmacological denervation of the stomach (bilateral or unilateral truncal vagotomy, or local injection of botulinum toxin type A) markedly reduced tumor incidence and progression, but only in the denervated portion of the stomach. Vagotomy or botulinum toxin type A treatment also enhanced the therapeutic effects of systemic chemotherapy and prolonged survival. Denervation-induced suppression of tumorigenesis was associated with inhibition of Wnt signaling and suppression of stem cell expansion. In gastric organoid cultures, neurons stimulated growth in a Wnt-mediated fashion through cholinergic signaling. Furthermore, pharmacological inhibition or genetic knockout of the muscarinic acetylcholine M3 receptor suppressed gastric tumorigenesis. In gastric cancer patients, tumor stage correlated with neural density and activated Wnt signaling, whereas vagotomy reduced the risk of gastric cancer. Together, our findings suggest that vagal innervation contributes to gastric tumorigenesis via M3 receptor–mediated Wnt signaling in the stem cells, and that denervation might represent a feasible strategy for the control of gastric cancer.


Gastroenterology | 2013

Mice That Express Human Interleukin-8 Have Increased Mobilization of Immature Myeloid Cells, Which Exacerbates Inflammation and Accelerates Colon Carcinogenesis

Samuel Asfaha; Alexander Dubeykovskiy; Hiroyuki Tomita; Xiangdong Yang; Sarah Stokes; Wataru Shibata; Richard A. Friedman; Hiroshi Ariyama; Zinaida A. Dubeykovskaya; Sureshkumar Muthupalani; Russell Ericksen; Harold Frucht; James G. Fox; Timothy C. Wang

BACKGROUND & AIMS Interleukin (IL)-8 has an important role in initiating inflammation in humans, attracting immune cells such as neutrophils through their receptors CXCR1 and CXCR2. IL-8 has been proposed to contribute to chronic inflammation and cancer. However, mice do not have the IL-8 gene, so human cancer cell lines and xenograft studies have been used to study the role of IL-8 in colon and gastric carcinogenesis. We generated mice that carry a bacterial artificial chromosome that encompasses the entire human IL-8 gene, including its regulatory elements (IL-8Tg mice). METHODS We studied the effects of IL-8 expression in APCmin(+/-) mice and IL-8Tg mice given azoxymethane and dextran sodium sulfate (DSS). We also examined the effects of IL-8 expression in gastric cancer in INS-GAS mice that overexpress gastrin and IL-8Tg mice infected with Helicobacter felis. RESULTS In IL-8Tg mice, expression of human IL-8 was controlled by its own regulatory elements, with virtually no messenger RNA or protein detectable under basal conditions. IL-8 was strongly up-regulated on systemic or local inflammatory stimulation, increasing mobilization of immature CD11b(+)Gr-1(+) myeloid cells (IMCs) with thioglycolate-induced peritonitis, DSS-induced colitis, and H. felis-induced gastritis. IL-8 was increased in colorectal tumors from patients and IL-8Tg mice compared with nontumor tissues. IL-8Tg mice developed more tumors than wild-type mice following administration of azoxymethane and DSS. Expression of IL-8 increased tumorigenesis in APCmin(+/-) mice compared with APCmin(+/-) mice that lack IL-8; this was associated with increased numbers of IMCs and angiogenesis in the tumors. CONCLUSIONS IL-8 contributes to gastrointestinal carcinogenesis by mobilizing IMCs and might be a therapeutic target for gastrointestinal cancers.


Gut | 2014

Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis

Kvin Lertpiriyapong; Mark T. Whary; Sureshkumar Muthupalani; Jennifer L. Lofgren; Eric R. Gamazon; Yan Feng; Zhongming Ge; Timothy C. Wang; James G. Fox

Objectives Gastric colonisation with intestinal flora (IF) has been shown to promote Helicobacter pylori (Hp)-associated gastric cancer. However, it is unknown if the mechanism involves colonisation with specific or diverse microbiota secondary to gastric atrophy. Design Gastric colonisation with Altered Schaedlers flora (ASF) and Hp were correlated with pathology, immune responses and mRNA expression for proinflammatory and cancer-related genes in germ-free (GF), Hp monoassociated (mHp), restricted ASF (rASF; 3 species), and specific pathogen-free (complex IF), hypergastrinemic INS-GAS mice 7 months postinfection. Results Male mice cocolonised with rASFHp or IFHp developed the most severe pathology. IFHp males had the highest inflammatory responses, and 40% developed invasive gastrointestinal intraepithelial neoplasia (GIN). Notably, rASFHp colonisation was highest in males and 23% developed invasive GIN with elevated expression of inflammatory biomarkers. Lesions were less severe in females and none developed GIN. Gastritis in male rASFHp mice was accompanied by decreased Clostridum species ASF356 and Bacteroides species ASF519 colonisation and an overgrowth of Lactobacillus murinus ASF361, supporting that inflammation-driven atrophy alters the gastric niche for GI commensals. Hp colonisation also elevated expression of IL-11 and cancer-related genes, Ptger4 and Tgf-β, further supporting that Hp infection accelerates gastric cancer development in INS-GAS mice. Conclusions rASFHp colonisation was sufficient for GIN development in males, and lower GIN incidence in females was associated with lower inflammatory responses and gastric commensal and Hp colonisation. Colonisation efficiency of commensals appears more important than microbial diversity and lessens the probability that specific gastrointestinal pathogens are contributing to cancer risk.


PLOS ONE | 2013

Intestinal Microbiota Composition of Interleukin-10 Deficient C57BL/6J Mice and Susceptibility to Helicobacter hepaticus-Induced Colitis

Ines Yang; Daniel Eibach; Friederike Kops; Birgit Brenneke; Sabrina Woltemate; Jessika Schulze; André Bleich; Achim D. Gruber; Sureshkumar Muthupalani; James G. Fox; Christine Josenhans; Sebastian Suerbaum

The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10−/− mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10−/− mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.


PLOS Genetics | 2015

Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo.

Orsolya Kiraly; Guanyu Gong; Werner Olipitz; Sureshkumar Muthupalani; Bevin P. Engelward

Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence.


Gastroenterology | 2010

Conditional Deletion of IκB-Kinase-β Accelerates Helicobacter-Dependent Gastric Apoptosis, Proliferation, and Preneoplasia

Wataru Shibata; Shigeo Takaishi; Sureshkumar Muthupalani; D. Mark Pritchard; Mark T. Whary; Arlin B. Rogers; James G. Fox; Kelly S. Betz; Klaus H. Kaestner; Michael Karin; Timothy C. Wang

BACKGROUND & AIMS The nuclear factor kappaB (NF-kappaB)/IkappaB-kinase-beta (IKKbeta) pathway has been shown to represent a key link between inflammation and cancer, inducing pro-inflammatory cytokines in myeloid cells and anti-apoptotic pathways in epithelial cells. However, the role of NF-kappaB pathway in gastric carcinogenesis and injury has not been well-defined. We derived mice with a conditional knockout of IKKbeta in gastric epithelial cells (GECs) and myeloid cells, and examined responses to ionizing radiation (IR) and Helicobacter felis infection. METHODS Ikkbeta(Deltastom) mice were generated by crossing Foxa3-Cre mice to Ikkbeta(F/F) mice. Cellular stress was induced with IR and H felis in Ikkbeta(Deltastom), Ikkbeta(F/F), and cis-NF-kappaB-enhanced green fluorescent protein (GFP) reporter mice. Gastric histopathology, apoptosis, proliferation, necrosis, reactive oxygen species, and expression of cytokines, chemokines, and anti-apoptotic genes were assessed. The role of myeloid IKKbeta in these models was studied by crosses with LysM-Cre mice. RESULTS NF-kappaB activity was upregulated in myeloid cells with acute H felis infection, but in GECs by IR or long-term H felis infection during progression to dysplasia. Deletion of IKKbeta in GECs led to increased apoptosis, reactive oxygen species, and cellular necrosis, and resulted in up-regulation of interleukin-1alpha and down-regulation of anti-apoptotic genes. Loss of IKKbeta in GECs resulted in worse inflammation and more rapid progression to gastric preneoplasia, while loss of IKKbeta in myeloid cells inhibited development of gastric atrophy. CONCLUSIONS The loss of IKKbeta/NF-kappaB signaling in GECs results in increased apoptosis and necrosis in response to cellular stress, and accelerated development of dysplasia by Helicobacter infection.


Infection and Immunity | 2009

Concurrent Helicobacter bilis Infection in C57BL/6 Mice Attenuates Proinflammatory H. pylori-Induced Gastric Pathology

Laura B. Lemke; Zhongming Ge; Mark T. Whary; Yan Feng; Arlin B. Rogers; Sureshkumar Muthupalani; James G. Fox

ABSTRACT Because coinfections can alter helicobacter gastritis, we investigated whether enterohepatic Helicobacter bilis modulates Helicobacter pylori gastritis in C57BL/6 mice. Thirty mice per group were sham dosed, H. bilis or H. pylori infected, or H. bilis infected followed in 2 weeks by H. pylori and then evaluated at 6 and 11 months postinfection (mpi) for gastritis and premalignant lesions. Compared to H. pylori-infected mice, H. bilis/H. pylori-infected mice at 6 and 11 mpi had less severe gastritis, atrophy, mucous metaplasia and hyperplasia (P < 0.01) and, additionally, at 11 mpi, less severe intestinal metaplasia and dysplasia (P < 0.05). H. bilis/H. pylori-infected mice at 11 mpi exhibited less Ki67 labeling of proliferating epithelial cells, reduced numbers of FoxP3+ T-regulatory (TREG) cells, and lower FoxP3+ mRNA levels than did H. pylori-infected mice (P < 0.05). Proinflammatory interleukin-1β (IL-1β), gamma interferon, and tumor necrosis factor alpha mRNA levels were attenuated in H. bilis/H. pylori-infected mice at 6 and 11 mpi (P < 0.01), although anti-inflammatory IL-10, IL-13, and transforming growth factor β1 mRNA levels were not consistently impacted by H. bilis coinfection. Decreased pathology in H. bilis/H. pylori-infected mice correlated with higher gastric H. pylori colonization at 6 mpi (P < 0.001) and lower Th1-associated immunoglobulin G2c responses to H. pylori at 6 and 10 mpi (P < 0.05). We hypothesized that reduced pathology in H. bilis/H. pylori-infected mice was due to H. bilis-primed TREG cells in the lower bowel that migrated to the gastric compartment and inhibited Th1 responses to subsequent H. pylori infection. Thus, H. pylori-induced gastric lesions may vary in mouse models of unknown enteric helicobacter infection status and, importantly, variable sequelae to human H. pylori infection, particularly in developing countries, may occur where coinfection with lower bowel helicobacters and H. pylori may be common.

Collaboration


Dive into the Sureshkumar Muthupalani's collaboration.

Top Co-Authors

Avatar

James G. Fox

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Timothy C. Wang

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zhongming Ge

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark T. Whary

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yan Feng

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nancy S. Taylor

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeli Shen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander Sheh

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Melissa W. Mobley

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge