Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Toshev is active.

Publication


Featured researches published by Alexander Toshev.


computer vision and pattern recognition | 2015

Show and tell: A neural image caption generator

Oriol Vinyals; Alexander Toshev; Samy Bengio; Dumitru Erhan

Automatically describing the content of an image is a fundamental problem in artificial intelligence that connects computer vision and natural language processing. In this paper, we present a generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation and that can be used to generate natural sentences describing an image. The model is trained to maximize the likelihood of the target description sentence given the training image. Experiments on several datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. Our model is often quite accurate, which we verify both qualitatively and quantitatively. For instance, while the current state-of-the-art BLEU-1 score (the higher the better) on the Pascal dataset is 25, our approach yields 59, to be compared to human performance around 69. We also show BLEU-1 score improvements on Flickr30k, from 56 to 66, and on SBU, from 19 to 28. Lastly, on the newly released COCO dataset, we achieve a BLEU-4 of 27.7, which is the current state-of-the-art.


computer vision and pattern recognition | 2014

DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev; Christian Szegedy

We propose a method for human pose estimation based on Deep Neural Networks (DNNs). The pose estimation is formulated as a DNN-based regression problem towards body joints. We present a cascade of such DNN regres- sors which results in high precision pose estimates. The approach has the advantage of reasoning about pose in a holistic fashion and has a simple but yet powerful formula- tion which capitalizes on recent advances in Deep Learn- ing. We present a detailed empirical analysis with state-of- art or better performance on four academic benchmarks of diverse real-world images.


computer vision and pattern recognition | 2014

Scalable Object Detection Using Deep Neural Networks

Dumitru Erhan; Christian Szegedy; Alexander Toshev; Dragomir Anguelov

Deep convolutional neural networks have recently achieved state-of-the-art performance on a number of image recognition benchmarks, including the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-2012). The winning model on the localization sub-task was a network that predicts a single bounding box and a confidence score for each object category in the image. Such a model captures the whole-image context around the objects but cannot handle multiple instances of the same object in the image without naively replicating the number of outputs for each instance. In this work, we propose a saliency-inspired neural network model for detection, which predicts a set of class-agnostic bounding boxes along with a single score for each box, corresponding to its likelihood of containing any object of interest. The model naturally handles a variable number of instances for each class and allows for cross-class generalization at the highest levels of the network. We are able to obtain competitive recognition performance on VOC2007 and ILSVRC2012, while using only the top few predicted locations in each image and a small number of neural network evaluations.


european conference on computer vision | 2010

Cascaded models for articulated pose estimation

Benjamin Sapp; Alexander Toshev; Ben Taskar

We address the problem of articulated human pose estimation by learning a coarse-to-fine cascade of pictorial structure models. While the fine-level state-space of poses of individual parts is too large to permit the use of rich appearance models, most possibilities can be ruled out by efficient structured models at a coarser scale. We propose to learn a sequence of structured models at different pose resolutions, where coarse models filter the pose space for the next level via their max-marginals. The cascade is trained to prune as much as possible while preserving true poses for the final level pictorial structure model. The final level uses much more expensive segmentation, contour and shape features in the model for the remaining filtered set of candidates. We evaluate our framework on the challenging Buffy and PASCAL human pose datasets, improving the state-of-the-art.


computer vision and pattern recognition | 2016

Generation and Comprehension of Unambiguous Object Descriptions

Junhua Mao; Jonathan Huang; Alexander Toshev; Oana Maria Camburu; Alan L. Yuille; Kevin P. Murphy

We propose a method that can generate an unambiguous description (known as a referring expression) of a specific object or region in an image, and which can also comprehend or interpret such an expression to infer which object is being described. We show that our method outperforms previous methods that generate descriptions of objects without taking into account other potentially ambiguous objects in the scene. Our model is inspired by recent successes of deep learning methods for image captioning, but while image captioning is difficult to evaluate, our task allows for easy objective evaluation. We also present a new large-scale dataset for referring expressions, based on MSCOCO. We have released the dataset and a toolbox for visualization and evaluation, see https://github.com/ mjhucla/Google_Refexp_toolbox.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2017

Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning Challenge

Oriol Vinyals; Alexander Toshev; Samy Bengio; Dumitru Erhan

Automatically describing the content of an image is a fundamental problem in artificial intelligence that connects computer vision and natural language processing. In this paper, we present a generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation and that can be used to generate natural sentences describing an image. The model is trained to maximize the likelihood of the target description sentence given the training image. Experiments on several datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. Our model is often quite accurate, which we verify both qualitatively and quantitatively. Finally, given the recent surge of interest in this task, a competition was organized in 2015 using the newly released COCO dataset. We describe and analyze the various improvements we applied to our own baseline and show the resulting performance in the competition, which we won ex-aequo with a team from Microsoft Research.


computer vision and pattern recognition | 2010

Object detection via boundary structure segmentation

Alexander Toshev; Ben Taskar; Kostas Daniilidis

We address the problem of object detection and segmentation using holistic properties of object shape. Global shape representations are highly susceptible to clutter inevitably present in realistic images, and can be robustly recognized only using a precise segmentation of the object. To this end, we propose a figure/ground segmentation method for extraction of image regions that resemble the global properties of a model boundary structure and are perceptually salient. Our shape representation, called the chordiogram, is based on geometric relationships of object boundary edges, while the perceptual saliency cues we use favor coherent regions distinct from the background. We formulate the segmentation problem as an integer quadratic program and use a semidefinite programming relaxation to solve it. Obtained solutions provide the segmentation of an object as well as a detection score used for object recognition. Our single-step approach improves over state of the art methods on several object detection and segmentation benchmarks.


computer vision and pattern recognition | 2010

Detecting and parsing architecture at city scale from range data

Alexander Toshev; Philippos Mordohai; Ben Taskar

We present a method for detecting and parsing buildings from unorganized 3D point clouds into a compact, hierarchical representation that is useful for high-level tasks. The input is a set of range measurements that cover large-scale urban environment. The desired output is a set of parse trees, such that each tree represents a semantic decomposition of a building – the nodes are roof surfaces as well as volumetric parts inferred from the observable surfaces. We model the above problem using a simple and generic grammar and use an efficient dependency parsing algorithm to generate the desired semantic description. We show how to learn the parameters of this simple grammar in order to produce correct parses of complex structures. We are able to apply our model on large point clouds and parse an entire city.


european conference on computer vision | 2016

The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition

Jonathan Krause; Benjamin Sapp; Andrew Howard; Howard Zhou; Alexander Toshev; Tom Duerig; James Philbin; Li Fei-Fei

Current approaches for fine-grained recognition do the following: First, recruit experts to annotate a dataset of images, optionally also collecting more structured data in the form of part annotations and bounding boxes. Second, train a model utilizing this data. Toward the goal of solving fine-grained recognition, we introduce an alternative approach, leveraging free, noisy data from the web and simple, generic methods of recognition. This approach has benefits in both performance and scalability. We demonstrate its efficacy on four fine-grained datasets, greatly exceeding existing state of the art without the manual collection of even a single label, and furthermore show first results at scaling to more than 10,000 fine-grained categories. Quantitatively, we achieve top-1 accuracies of \(92.3\,\%\) on CUB-200-2011, \(85.4\,\%\) on Birdsnap, \(93.4\,\%\) on FGVC-Aircraft, and \(80.8\,\%\) on Stanford Dogs without using their annotated training sets. We compare our approach to an active learning approach for expanding fine-grained datasets.


International Journal of Computer Vision | 2012

Shape-Based Object Detection via Boundary Structure Segmentation

Alexander Toshev; Ben Taskar; Kostas Daniilidis

We address the problem of object detection and segmentation using global holistic properties of object shape. Global shape representations are highly susceptible to clutter inevitably present in realistic images, and thus can be applied robustly only using a precise segmentation of the object. To this end, we propose a figure/ground segmentation method for extraction of image regions that resemble the global properties of a model boundary structure and are perceptually salient. Our shape representation, called the chordiogram, is based on geometric relationships of object boundary edges, while the perceptual saliency cues we use favor coherent regions distinct from the background. We formulate the segmentation problem as an integer quadratic program and use a semidefinite programming relaxation to solve it. The obtained solutions provide a segmentation of the object as well as a detection score used for object recognition. Our single-step approach achieves state-of-the-art performance on several object detection and segmentation benchmarks.

Collaboration


Dive into the Alexander Toshev's collaboration.

Top Co-Authors

Avatar

Ben Taskar

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Kostas Daniilidis

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Benjamin Sapp

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge