Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Treiber is active.

Publication


Featured researches published by Alexander Treiber.


Drug Metabolism and Disposition | 2007

Bosentan Is a Substrate of Human OATP1B1 and OATP1B3: Inhibition of Hepatic Uptake as the Common Mechanism of Its Interactions with Cyclosporin A, Rifampicin, and Sildenafil

Alexander Treiber; Ralph Schneiter; Stephanie Häusler; Bruno Stieger

The elimination process of the endothelin receptor antagonist bosentan (Tracleer) in humans is entirely dependent on metabolism mediated by two cytochrome P450 (P450) enzymes, i.e., CYP3A4 and CYP2C9. Most interactions with concomitantly administered drugs can be rationalized in terms of inhibition of these P450 enzymes. The increased bosentan concentrations observed in the presence of cyclosporin A, rifampicin, or sildenafil, however, are incompatible with this paradigm and prompted the search for alternative mechanisms governing these interactions. In the present article, we identify bosentan and its active plasma metabolite, Ro 48-5033 (4-(2-hydroxy-1,1-dimethyl-ethyl)-N-[6-(2-hydroxy-ethoxy)-5-(2-methoxy-phenoxy)-[2,2′]bipyrimidinyl-4-yl]-benzenesulfonamide), as substrates of the human organic anion transporting polypeptides (OATP) OATP1B1 and OATP1B3. Bosentan uptake into Chinese hamster ovary cells expressing these OATP transporters was efficiently inhibited by cyclosporin A and rifampicin with IC50 values significantly below their effective plasma concentrations in humans. The phosphodiesterase-5 inhibitor sildenafil was also shown to interfere with OATP-mediated transport, however, at concentrations above those achieved in therapeutic use. Therefore, inhibition of bosentan hepatic uptake may represent an alternative/complementary mechanism to rationalize some of the pharmacokinetic interactions seen in therapeutic use. A similar picture has been drawn for drugs like pitavastatin and fexofenadine, drugs that are mainly excreted in unchanged form. Bosentan elimination, in contrast, is entirely dependent on metabolism. Therefore, the described interactions with rifampicin, cyclosporin A, and, to a lesser extent, sildenafil represent evidence that inhibition of hepatic uptake may become the rate-limiting step in the overall elimination process even for drugs whose elimination is entirely dependent on metabolism.


Journal of Pharmacology and Experimental Therapeutics | 2008

Pharmacology of Macitentan, an Orally Active Tissue-Targeting Dual Endothelin Receptor Antagonist

Marc Iglarz; Christoph Binkert; Keith Morrison; Walter Fischli; John Gatfield; Alexander Treiber; Thomas Weller; Martin Bolli; Christoph Boss; Stephan Buchmann; Bruno Capeleto; Patrick Hess; Changbin Qiu; Martine Clozel

Macitentan, also called Actelion-1 or ACT-064992 [N-[5-(4-bromophenyl)-6-(2-(5-bromopyrimidin-2-yloxy)ethoxy)-pyrimidin-4-yl]-N′-propylaminosulfonamide], is a new dual ETA/ETB endothelin (ET) receptor antagonist designed for tissue targeting. Selection of macitentan was based on inhibitory potency on both ET receptors and optimization of physicochemical properties to achieve high affinity for lipophilic milieu. In vivo, macitentan is metabolized into a major and pharmacologically active metabolite, ACT-132577. Macitentan and its metabolite antagonized the specific binding of ET-1 on membranes of cells overexpressing ETA and ETB receptors and blunted ET-1-induced calcium mobilization in various natural cell lines, with inhibitory constants within the nanomolar range. In functional assays, macitentan and ACT-132577 inhibited ET-1-induced contractions in isolated endothelium-denuded rat aorta (ETA receptors) and sarafotoxin S6c-induced contractions in isolated rat trachea (ETB receptors). In rats with pulmonary hypertension, macitentan prevented both the increase of pulmonary pressure and the right ventricle hypertrophy, and it markedly improved survival. In diabetic rats, chronic administration of macitentan decreased blood pressure and proteinuria and prevented end-organ damage (renal vascular hypertrophy and structural injury). In conclusion, macitentan, by its tissue-targeting properties and dual antagonism of ET receptors, protects against end-organ damage in diabetes and improves survival in pulmonary hypertensive rats. This profile makes macitentan a new agent to treat cardiovascular disorders associated with chronic tissue ET system activation.


Journal of Medicinal Chemistry | 2012

The Discovery of N-[5-(4-Bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-N′-propylsulfamide (Macitentan), an Orally Active, Potent Dual Endothelin Receptor Antagonist

Martin Bolli; Christoph Boss; Christoph Binkert; Stephan Buchmann; Daniel Bur; Patrick Hess; Marc Iglarz; Solange Meyer; Josiane Rein; Markus Rey; Alexander Treiber; Martine Clozel; Walter Fischli; Thomas Weller

Starting from the structure of bosentan (1), we embarked on a medicinal chemistry program aiming at the identification of novel potent dual endothelin receptor antagonists with high oral efficacy. This led to the discovery of a novel series of alkyl sulfamide substituted pyrimidines. Among these, compound 17 (macitentan, ACT-064992) emerged as particularly interesting as it is a potent inhibitor of ET(A) with significant affinity for the ET(B) receptor and shows excellent pharmacokinetic properties and high in vivo efficacy in hypertensive Dahl salt-sensitive rats. Compound 17 successfully completed a long-term phase III clinical trial for pulmonary arterial hypertension.


Journal of Medicinal Chemistry | 2010

2-Imino-thiazolidin-4-one Derivatives as Potent, Orally Active S1P1 Receptor Agonists

Martin Bolli; Stefan Abele; Christoph Binkert; Roberto Bravo; Stephan Buchmann; Daniel Bur; John Gatfield; Patrick Hess; Christopher Kohl; Céline Mangold; Boris Mathys; Katalin Menyhart; Claus Müller; Oliver Nayler; Michael Scherz; Gunther Schmidt; Virginie Sippel; Beat Steiner; Daniel S. Strasser; Alexander Treiber; Thomas Weller

Sphingosine-1-phosphate (S1P) is a widespread lysophospholipid which displays a wealth of biological effects. Extracellular S1P conveys its activity through five specific G-protein coupled receptors numbered S1P(1) through S1P(5). Agonists of the S1P(1) receptor block the egress of T-lymphocytes from thymus and lymphoid organs and hold promise for the oral treatment of autoimmune disorders. Here, we report on the discovery and detailed structure-activity relationships of a novel class of S1P(1) receptor agonists based on the 2-imino-thiazolidin-4-one scaffold. Compound 8bo (ACT-128800) emerged from this series and is a potent, selective, and orally active S1P(1) receptor agonist selected for clinical development. In the rat, maximal reduction of circulating lymphocytes was reached at a dose of 3 mg/kg. The duration of lymphocyte sequestration was dose dependent. At a dose of 100 mg/kg, the effect on lymphocyte counts was fully reversible within less than 36 h. Pharmacokinetic investigation of 8bo in beagle dogs suggests that the compound is suitable for once daily dosing in humans.


Xenobiotica | 2007

The pharmacokinetics and tissue distribution of the glucosylceramide synthase inhibitor miglustat in the rat

Alexander Treiber; O. Morand; M. Clozel

Miglustat (Zavesca™) is a reversible inhibitor of glucosylceramide synthase, which catalyses the first step in the glucosylceramide biosynthetic pathway, and is approved for therapy in patients with type 1 Gaucher disease. The present report describes the pharmacokinetic profile of miglustat in the rat with a focus on tissue distribution. Experiments were performed with radiolabeled miglustat itself and with a perbutyrated prodrug, the latter being readily converted to miglustat during gastrointestinal absorption and first pass metabolism. Miglustat was well absorbed and exhibited an oral bioavailability of 40–60%. Tissue distribution studies indicated the presence of miglustat in a number of organs and tissues that are considered of importance for the long-term therapeutic benefit, in particular the central nervous system, bone and lung. Miglustat was eliminated via renal clearance by a combination of glomerular filtration and active secretion. Hepatic clearance was negligible, as was the role of metabolism in the overall elimination process of miglustat in the rat.


Clinical Pharmacology & Therapeutics | 2007

Inhibitory and Inductive Effects of Rifampin on the Pharmacokinetics of Bosentan in Healthy Subjects

P. L. M. van Giersbergen; Alexander Treiber; R Schneiter; H Dietrich; Jasper Dingemanse

This study was conducted to investigate the effect of rifampin on the pharmacokinetics of bosentan. Healthy male subjects received bosentan 125 mg b.i.d. for 6.5 days in the presence or absence of rifampin 600 mg once a day. In vitro experiments were performed to investigate the effect of rifampin on the uptake of bosentan into Chinese hamster ovary cells expressing the human organic anion‐transporting polypeptide (OATP)1B1, −1B3, and −2B1. Following the first concomitant administration, there was a fivefold increase in bosentan trough concentrations. At steady state, concomitant rifampin significantly decreased exposure to bosentan by 58%. Rifampin potently inhibited the uptake of bosentan into cells expressing human OATP1B1 and −1B3. Rifampin decreased the exposure to bosentan consistent with its known cytochrome P450 enzyme‐inductive properties. The initial increase in bosentan concentrations can be explained by an inhibitory effect of rifampin on hepatic drug transporters.


Xenobiotica | 2012

Absorption, distribution, metabolism, and excretion of macitentan, a dual endothelin receptor antagonist, in humans

Shirin Bruderer; Gérard Hopfgartner; Michael Seiberling; Janine Wank; Patricia N. Sidharta; Alexander Treiber; Jasper Dingemanse

Macitentan is a tissue-targeting, dual endothelin receptor antagonist, currently under phase 3 investigation in pulmonary arterial hypertension. In this study the disposition and metabolism of macitentan were investigated following administration of a single oral 10 mg dose of 14C-macitentan to six healthy male subjects. The total radioactivity in matrices was determined using liquid scintillation counting. The proposed structure of metabolites was based on mass spectrometry characteristics and, when available, confirmed by comparison with reference compounds. Mean (± SD) cumulative recovery of radioactivity from faeces and urine was 73.6% (±6.2%) of the administered radioactive dose, with 49.7% (±3.9%) cumulative recovery from urine, and 23.9% (±4.8%) from faeces. In plasma, in addition to parent macitentan, ACT-132577, a pharmacologically active metabolite elicited by oxidative depropylation and the carboxylic acid metabolite ACT-373898 were identified. In urine, four entities were identified, with the hydrolysis product of ACT-373898 as the most abundant one. In faeces, five entities were identified, with the hydrolysis product of macitentan and ACT-132577 as the most abundant one. Concentrations of total radioactivity in whole blood were lower compared to plasma, which indicates that macitentan and its metabolites poorly bind to or penetrate into erythrocytes.


Aaps Journal | 2012

Effect of Cyclosporine and Rifampin on the Pharmacokinetics of Macitentan, a Tissue-Targeting Dual Endothelin Receptor Antagonist

Shirin Bruderer; Päivi Äänismaa; Marie-Claude Homery; Stephanie Häusler; Kyle Landskroner; Patricia N. Sidharta; Alexander Treiber; Jasper Dingemanse

Macitentan is a dual endothelin receptor antagonist under phase 3 investigation in pulmonary arterial hypertension. We investigated the effect of cyclosporine (Cs) and rifampin on the pharmacokinetics of macitentan and its metabolites ACT-132577 and ACT-373898 in healthy male subjects. In addition, in vitro studies were performed to investigate interactions between macitentan and its active metabolite ACT-132577 with human organic anion-transporting polypeptides (OATPs). The clinical study (AC-055-111) was conducted as a two-part, one-sequence, crossover study. Ten subjects in each part received multiple-dose macitentan followed by multiple-dose co-administration of Cs (part A) or rifampin (part B). In the presence of Cs, steady-state area under the plasma concentration–time profiles during a dose interval (AUCτ) for macitentan and ACT-373898 increased 10% and 7%, respectively, and decreased 3% for ACT-132577. Steady-state AUCτ of macitentan and ACT-373898 in the presence of rifampin decreased 79% and 64%, respectively. For ACT-132577, no relevant difference in AUCτ between the two treatments was observed. Macitentan co-administered with Cs or rifampin was well tolerated. The complementary in vitro studies demonstrated no marked differences in uptake rates of macitentan and ACT-132577 between the wild-type and OATP over-expressing cells over the concentration range tested. Concomitant treatment with Cs did not have any clinically relevant effect on the exposure to macitentan or its metabolites, at steady-state. Concomitant treatment with rifampin reduced significantly the exposure to macitentan and its metabolite ACT-373898 at steady-state but did not affect the exposure to the active metabolite ACT-132577 to a clinically relevant extent.


Clinical Pharmacology & Therapeutics | 2002

In vivo and in vitro studies exploring the pharmacokinetic interaction between bosentan, a dual endothelin receptor antagonist, and glyburide

Paul L. M. van Giersbergen; Alexander Treiber; Martine Clozel; Frédéric Bodin; Jasper Dingemanse

In a clinical trial with patients with chronic heart failure, a higher incidence ofelevated levels of liver transaminases was observed during concomitant treatment with bosentan, a dual endothelin receptor antagonist, and glyburide (INN, glibenclamide), a sulfonylurea‐type antidiabetic drug, than with treatment withbosentan alone. This study was conducted to investigate a possible pharmacokinetic interaction between bosentan and glyburide.


ChemMedChem | 2013

Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist.

Michel A. Steiner; John Gatfield; Catherine Brisbare-Roch; Hendrik Dietrich; Alexander Treiber; Francois Jenck; Christoph Boss

Stress relief: Orexin neuropeptides regulate arousal and stress processing through orexin receptor type 1 (OXR-1) and 2 (OXR-2) signaling. A selective OXR-1 antagonist, represented by a phenylglycine-amide substituted tetrahydropapaverine derivative (ACT-335827), is described that is orally available, penetrates the brain, and decreases fear, compulsive behaviors and autonomic stress reactions in rats.

Collaboration


Dive into the Alexander Treiber's collaboration.

Researchain Logo
Decentralizing Knowledge