Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander V. Mayorov is active.

Publication


Featured researches published by Alexander V. Mayorov.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans

Jeffrey S. Mogil; Sonya G. Wilson; Elissa J. Chesler; Andrew L. Rankin; Kumar V.S. Nemmani; William R. Lariviere; M. Kristina Groce; Margaret R. Wallace; Lee M. Kaplan; Roland Staud; Timothy J. Ness; Toni L. Glover; Magda Stankova; Alexander V. Mayorov; Victor J. Hruby; Judith E. Grisel; Roger B. Fillingim

Sex specificity of neural mechanisms modulating nociceptive information has been demonstrated in rodents, and these qualitative sex differences appear to be relevant to analgesia from κ-opioid receptor agonists, a drug class reported to be clinically effective only in women. Via quantitative trait locus mapping followed by a candidate gene strategy using both mutant mice and pharmacological tools, we now demonstrate that the melanocortin-1 receptor (Mc1r) gene mediates κ-opioid analgesia in female mice only. This finding suggested that individuals with variants of the human MC1R gene, associated in our species with red hair and fair skin, might also display altered κ-opioid analgesia. We found that women with two variant MC1R alleles displayed significantly greater analgesia from the κ-opioid, pentazocine, than all other groups. This study demonstrates an unexpected role for the MC1R gene, verifies that pain modulation in the two sexes involves neurochemically distinct substrates, and represents an example of a direct translation of a pharmacogenetic finding from mouse to human.


Journal of Medicinal Chemistry | 2011

A vaccine strategy that induces protective immunity against heroin.

G. Neil Stowe; Leandro F. Vendruscolo; Scott Edwards; Joel E. Schlosburg; Kaushik K. Misra; Gery Schulteis; Alexander V. Mayorov; Joseph S. Zakhari; George F. Koob; Kim D. Janda

Heroin addiction is a wide-reaching problem with a spectrum of damaging social consequences. A vaccine capable of blocking heroins effects could provide a long-lasting and sustainable adjunct to heroin addiction therapy. Heroin, however, presents a particularly challenging immunotherapeutic target, as it is metabolized to multiple psychoactive molecules. To reconcile this dilemma, we examined the idea of a singular vaccine with the potential to display multiple drug-like antigens; thus two haptens were synthesized, one heroin-like and another morphine-like in chemical structure. A key feature in this approach is that immunopresentation with the heroin-like hapten is thought to be immunochemically dynamic such that multiple haptens are simultaneously presented to the immune system. We demonstrate the significance of this approach through the extremely rapid generation of robust polyclonal antibody titers with remarkable specificity. Importantly, both the antinociceptive effects of heroin and acquisition of heroin self-administration were blocked in rats vaccinated using the heroin-like hapten.


Expert Review of Vaccines | 2012

Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines

Carl R. Alving; Mangala Rao; Nicholas J. Steers; Gary R. Matyas; Alexander V. Mayorov

Liposomes containing monophosphoryl lipid A (MPLA) have previously exhibited considerable potency and safety in human trials with a variety of candidate vaccines, including vaccines to malaria, HIV-1 and several different types of cancer. The long history of research and development of MPLA and liposomal MPLA as vaccine adjuvants reveals that there are numerous opportunities for creation and development of generic (nonproprietary) adjuvant system formulations with these materials that are not only highly potent and safe, but also readily available as native materials or as synthetic compounds. They are easily manufactured as potentially inexpensive and easy to use adjuvant systems and might be effective even with synthetic peptides as antigens.


Journal of the American Chemical Society | 2011

Impact of Distinct Chemical Structures for the Development of a Methamphetamine Vaccine

Amira Y. Moreno; Alexander V. Mayorov; Kim D. Janda

(+)-Methamphetamine (METH) use and addiction has grown at alarming rates over the past two decades, while no approved pharmacotherapy exists for its treatment. Immunopharmacotherapy has the potential to offer relief through producing highly specific antibodies that prevent drug penetration across the blood-brain barrier thus decreasing reinforcement of the behavior. Current immunotherapy efforts against methamphetamine have focused on a single hapten structure, namely linker attachment at the aromatic ring of the METH molecule. Hapten design is largely responsible for immune recognition, as it affects presentation of the target antigen and thus the quality of the response. In the current paper we report the systematic generation of a series of haptens designed to target the most stable conformations of methamphetamine as determined by molecular modeling. On the basis of our previous studies with nicotine, we show that introduction of strategic molecular constraint is able to maximize immune recognition of the target structure as evidenced by higher antibody affinity. Vaccination of GIX(+) mice with six unique METH immunoconjugates resulted in high antibody titers for three particularly promising formulations (45-108 μg/mL, after the second immunization) and high affinity (82, 130, and 169 nM for MH2, MH6, and MH7 hapten-based vaccines, respectively). These findings represent a unique approach to the design of new vaccines against methamphetamine abuse.


Peptides | 2008

Effects of selective modulation of the central melanocortin-3-receptor on food intake and hypothalamic POMC expression

Michelle Lee; Andrea Kim; Irene M. Conwell; Victor J. Hruby; Alexander V. Mayorov; Minying Cai; Sharon L. Wardlaw

Hypothalamic POMC neurons regulate energy balance via interactions with brain melanocortin receptors (MC-Rs). POMC neurons express the MC3-R which can function as an inhibitory autoreceptor in vitro. We now demonstrate that central activation of MC3-R with ICV infusion of the specific MC3-R agonist, [D-Trp(8)]-gamma-MSH, transiently suppresses hypothalamic Pomc expression and stimulates food intake in rats. Conversely, we also show that ICV infusion of a low dose of a selective MC3-R antagonist causes a transient decrease in feeding and weight gain. These data support a functional inhibitory role for the MC3-R on POMC neurons that leads to changes in food intake.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Catalytic antibody degradation of ghrelin increases whole-body metabolic rate and reduces refeeding in fasting mice

Alexander V. Mayorov; Neri Amara; Jason Y. Chang; Jason A. Moss; Mark S. Hixon; Diana I. Ruiz; Michael M. Meijler; Eric P. Zorrilla; Kim D. Janda

Obesity is a chronic, costly, and globally prevalent condition, with excess caloric intake a suspected etiologic factor. Nonsurgical treatments are modestly efficacious, and weight loss maintenance is hampered by anti-famine homeostatic mechanisms. Ghrelin, a gastric hormone linked to meal initiation, energy expenditure, and fuel partitioning, is hypothesized to facilitate weight gain and impede weight loss. Unique among known animal peptides, the serine-3 residue of ghrelin is posttranslationally acylated with an n-octanoic acid, a modification important for the peptides active blood-brain transport and growth hormone secretagogue receptor-1 agonist activity. Pharmacological degradation of ghrelin would be hypothesized to reduce ghrelins biological effects. To study endogenous ghrelins role in appetite and energy expenditure, we generated antibodies that hydrolyze the octanoyl moiety of ghrelin to form des-acyl ghrelin. The most proficient antibody catalyst, GHR-11E11, was found to display a second-order rate constant of 18 M−1·s−1 for the hydrolysis of ghrelin to des-acyl ghrelin. I.v. administration of GHR-11E11 (50 mg/kg) maintained a greater metabolic rate in fasting C57BL/6J mice as compared with mice receiving a control antibody and suppressed 6-h refeeding after 24 h of food deprivation. Indirect respiratory measures of metabolism after refeeding and relative fuel substrate utilization were unaffected. The results support the hypothesis that acylated ghrelin stimulates appetite and curbs energy expenditure during deficient energy intake, whereas des-acyl ghrelin does not potently share these functions. Catalytic anti-ghrelin antibodies might thereby adjunctively aid consolidation of caloric restriction-induced weight loss and might also be therapeutically relevant to Prader–Willi syndrome, characterized after infancy by hyperghrelinemia, hyperphagia, and obesity.


Vaccine | 2013

Liposomes containing monophosphoryl lipid A: a potent adjuvant system for inducing antibodies to heroin hapten analogs.

Gary R. Matyas; Alexander V. Mayorov; Kenner C. Rice; Arthur E. Jacobson; Kejun Cheng; Malliga R. Iyer; Fuying Li; Zoltan Beck; Kim D. Janda; Carl R. Alving

In order to create an effective immunization approach for a potential vaccine to heroin, liposomes containing monophosphoryl lipid A [L(MPLA)] were tested as an adjuvant system to induce antibodies to heroin hapten analogs. Four synthetic haptens and two immunization strategies were employed. In the first strategy, a hydrophobic 23 amino acid immunogenic peptide derived from the membrane proximal external region of gp41 from HIV-1 envelope protein was embedded as a carrier in the outer surface of L(MPLA), to which was conjugated a 15 amino acid universal T cell epitope and a terminal heroin hapten analog. In the second strategy, tetanus toxoid (TT) carrier protein was decorated with haptens by conjugation, and the hapten-conjugated protein was mixed with L(MPLA). After immunization of mice, each of the immunization strategies was effective for induction of IgG anti-hapten antibodies. The first immunization strategy induced a mean end-point IgG titer against one of two haptens tested of approximately 12,800; however, no detectable antibodies were induced against the liposome-associated HIV-1 carrier peptide. In the second immunization strategy, depending on the hapten used for decorating the TT, end-point IgG titers ranged from 100,000 to 6,500,000. In this strategy, in which hapten was conjugated to the TT, end-point IgG titers of 400,000 to the TT carrier were observed with each conjugate. However, upon mixing unconjugated TT with L(MPLA), anti-TT titers of 6,500,000 were observed. We conclude that L(MPLA) serves as a potent adjuvant for inducing antibodies to candidate heroin haptens. However, antibodies to the carrier peptide or protein were partly or completed inhibited by the presence of conjugated hapten.


Journal of Medicinal Chemistry | 2008

Design and Microwave-Assisted Synthesis of Novel Macrocyclic Peptides Active at Melanocortin Receptors: Discovery of Potent and Selective hMC5R Receptor Antagonists

Paolo Grieco; Minying Cai; Lu Liu; Alexander V. Mayorov; Kevin B. Chandler; Dev Trivedi; Guangxin Lin; Pietro Campiglia; Ettore Novellino; Victor J. Hruby

Differentiation of the physiological role of the melanocortin receptor 5 MC5R from that of other melanocortin receptors will require development of high affinity and selective antagonists. To date, a few synthetic antagonist ligands active at hMC5 receptor are available, but most do not have appreciable selectivity. With the aim to gain more potent and selective antagonists for the MC5R ligands, we have designed, synthesized, and pharmacologically characterized a series of alkylthioaryl-bridged macrocyclic peptide analogues derived from MT-II and SHU9119. These 20-membered macrocycles were synthesized by a tandem combination using solid phase peptide synthesis and microwave-assisted reactions. Biological assays for binding affinities and adenylate cyclase activities for the hMC1R, hMC3R, hMC4R, and hMC5R showed that three analogues, compounds, 9, 4, and 7, are selective antagonists at the hMC5 receptor. In particular, compound 9(PG-20N) is a selective and competitive hMC5R antagonist, with IC 50 of 130 +/- 11 nM, and a pA 2 value of 8.3, and represents an important tool for further biological investigations of the hMC5R. Compounds 4 and 7 (PG14N, PG17N) show potent and selective allosteric inhibition at hMC5R with IC 50 values of 38 +/- 3 nM and 58 +/- 6 nM, respectively. Compound 9 will be used to further investigate and more clearly understand the physiological roles played by the MC5 receptor in humans and other animals.


Peptides | 2005

Design of novel melanotropin agonists and antagonists with high potency and selectivity for human melanocortin receptors

Minying Cai; Alexander V. Mayorov; Jinfa Ying; Magda Stankova; Dev Trivedi; Chris Cabello; Victor J. Hruby

alpha-MSH and gamma-MSH are the natural endogenous hormones for the human melanocortin-1, 3, 4 and 5 receptors (hMC1R, hMC3R, hMC4R and hMC5R). These and more potent, stable and prolonged acting analogues such as NDP-alpha-MSH, MT-II and SHU-9119 are not very receptor selective. To develop potent and selective agonist and antagonist ligands for the melanocortin receptors we have used state-of-the-art biophysical studies, computational chemistry, and design of conformational and topographical constraints with novel templates.


Chemical Biology & Drug Design | 2006

Cell signaling and trafficking of human melanocortin receptors in real time using two-photon fluorescence and confocal laser microscopy: differentiation of agonists and antagonists.

Minying Cai; Eva V. Varga; Magda Stankova; Alexander V. Mayorov; Joseph W. Perry; Henry I. Yamamura; Dev Trivedi; Victor J. Hruby

Melanocortin hormones and neurotransmitters regulate a vast array of physiologic processes by interacting with five G‐protein‐coupled melanocortin receptor types. In the present study, we have systematically studied the regulation of individual human melanocortin receptor wild subtypes using a synthetic rhodamine‐labeled human melanotropin agonist and antagonist, arrestins fused to green fluorescent protein in conjunction with two‐photon fluorescence laser scanning microscopy and confocal microscopy. Stimulation of the melanocortin receptors by its cognate agonist triggered rapid arrestin recruitment and receptor internalization for all four human melanocortin receptors examined. Antagonists‐bound melanocortin receptors, on the other hand, did not recruit β‐arrestins, and remained in the cell membrane even after long‐term (30 min) treatment. Agonist‐mediated internalization of all melanocortin receptor subtypes was sensitive to inhibitors of clathrin‐dependent endocytosis, but not to caveolae inhibitors. In summary, agonist‐mediated internalization of all subtypes of melanocortin receptors are dependent upon β‐arrestin‐mediated clathrin‐coated pits, whereas, β‐arrestin‐2 conjugated green fluorescence protein (β‐arrestin‐2‐GFP) recruitment is not dependent on protein kinase A activation. Real time two‐photon fluorescence laser scanning microscopy is a most powerful tool to study the dynamic processes in living cells and tissues, without inflicting significant and often lethal damage to the specimen.

Collaboration


Dive into the Alexander V. Mayorov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim D. Janda

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl R. Alving

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Gary R. Matyas

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge