Alexander V. Piskunov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander V. Piskunov.
Inorganic Chemistry | 2011
Ivan D. Grishin; Dmitrii I. D’yachihin; Alexander V. Piskunov; Fedor M. Dolgushin; Alexander F. Smol’yakov; Mikhail M. Il’in; V. A. Davankov; Igor T. Chizhevsky; Dmitry F. Grishin
The heating of the 18-electron complex [3,3-(dppb)-3-H-3-Cl-closo-3,1,2-RuC(2)B(9)H(11)] (3) in benzene at 80 °C in the presence of a small amount of CCl(4) as initiator afforded paramagnetic 17-electron species [3,3-(dppb)-3-Cl-closo-3,1,2-RuC(2)B(9)H(11)] (4) along with minor amounts of two P-phenylene ortho-cycloboronated derivatives [3-Cl-3,3,8-{Ph(2)P(CH(2))(4)PPh-μ-(C(6)H(4)-ortho)}-closo-3,1,2-RuC(2)B(9)H(10)] (5) and [3,7-Cl(2)-3,3,8-{Ph(2)P(CH(2))(4)PPh-μ-(C(6)H(4)-ortho)}-closo-3,1,2-RuC(2)B(9)H(10)] (6) in total yield of ca. 80%. The heating of either 3 or 4 in toluene at 95 °C in the absence of CCl(4) led to the selective formation of 5, which was isolated in 64% and 46% yield, respectively. Thermolysis of 3 at higher temperatures (boiling toluene, 110 °C) gives novel paramagnetic species [3-Cl-3,3,7,8-{Ph(2)P(CH(2))(4)P-μ-(C(6)H(4)-ortho)(2)}-closo-3,1,2-RuC(2)B(9)H(9)] (7) featuring bis(ortho-cycloboronation) of both P-phenyl groups at the same phosphorus atom of the ruthenium-bound dppb ligand. All new paramagnetic complexes 4-7, as well as starting diamagnetic species 3, were characterized by single-crystal X-ray diffraction and, in addition, by EPR spectroscopic studies of odd-electron complexes. Ruthenacarboranes 3-5 and 7 all display high efficiency as catalysts for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). Complex 5 gave the best catalyst performance in terms of polydispersity; the PDI (M(w)/M(n)) of the polymer samples is as low as 1.15.
Inorganic Chemistry | 2014
Igor L. Fedushkin; Alexandra A. Skatova; Vladimir A. Dodonov; Valentina A. Chudakova; Natalia L. Bazyakina; Alexander V. Piskunov; Serhiy Demeshko; Georgy K. Fukin
The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1), which consists of redox-active ligand 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian), has been studied. The reaction of 1 with I2 proceeds via one-electron oxidation of each of two dpp-Bian ligands to a radical-anionic state and affords complex (dpp-Bian)IGa-GaI(dpp-Bian) (2). Dissolution of complex 2 in pyridine (Py) gives monomeric compound (dpp-Bian)GaI(Py) (3) as a result of a solvent-induced intramolecular electron transfer from the metal-metal bond to the dpp-Bian ligands. Treatment of compound 3 with B(C6F5)3 leads to removal of pyridine and restores compound 2. The reaction of compound 1 with 3,6-di-tert-butyl-ortho-benzoquinone (3,6-Q) proceeds with oxidation of all the redox-active centers in 1 (the Ga-Ga bond and two dpp-Bian dianions) and results in mononuclear catecholate (dpp-Bian)Ga(Cat) (4) (Cat = [3,6-Q](2-)). Treatment of 4 with AgBF4 gives a mixture of [(dpp-Bian)2Ag][BF4] (5) and (dpp-Bian)GaF(Cat) (6), which both consist of neutral dpp-Bian ligands. The reduction of benzylideneacetone (BA) with 1 generates the BA radical-anions, which dimerize, affording (dpp-Bian)Ga-(BA-BA)-Ga(dpp-Bian) (7). In this case the Ga-Ga bond remains unchanged. Within 10 min at 95 °C in solution compound 7 undergoes transformation to paramagnetic complex (dpp-Bian)Ga(BA-BA) (8) and metal-free compound C36H40N2 (9). The latter is a product of intramolecular addition of the C-H bond of one of the iPr groups to the C═N bond in dpp-Bian. Diamagnetic compounds 3, 5, 6, and 9 have been characterized by NMR spectroscopy, and paramagnetic complexes 2, 4, 7, and 8 by ESR spectroscopy. Molecular structures of 2-7 and 9 have been established by single-crystal X-ray analysis.
Inorganic Chemistry | 2016
Igor L. Fedushkin; Alexandra A. Skatova; Vladimir A. Dodonov; Xiao-Juan Yang; Valentina A. Chudakova; Alexander V. Piskunov; Serhiy Demeshko; E. V. Baranov
The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1) (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) toward acenaphthenequinone (AcQ), sulfur dioxide, and azobenzene was investigated. The reaction of 1 with AcQ in 1:1 molar ratio proceeds via two-electron reduction of AcQ to give (dpp-Bian)Ga(μ2-AcQ)Ga(dpp-Bian) (2), in which diolate [AcQ](2-) acts as bracket for the Ga-Ga bond. The interaction of 1 with AcQ in 1:2 molar ratio proceeds with an oxidation of the both dpp-Bian ligands as well as of the Ga-Ga bond to give (dpp-Bian)Ga(μ2-AcQ)2Ga(dpp-Bian) (3). At 330 K in toluene complex 2 decomposes to give compounds 3 and 1. The reaction of complex 2 with atmospheric oxygen results in oxidation of a Ga-Ga bond and affords (dpp-Bian)Ga(μ2-AcQ)(μ2-O)Ga(dpp-Bian) (4). The reaction of digallane 1 with SO2 produces, depending on the ratio (1:2 or 1:4), dithionites (dpp-Bian)Ga(μ2-O2S-SO2)Ga(dpp-Bian) (5) and (dpp-Bian)Ga(μ2-O2S-SO2)2Ga(dpp-Bian) (6). In compound 5 the Ga-Ga bond is preserved and supported by dithionite dianionic bracket. In compound 6 the gallium centers are bridged by two dithionite ligands. Both 5 and 6 consist of dpp-Bian radical anionic ligands. Four-electron reduction of azobenzene with 1 mol equiv of digallane 1 leads to complex (dpp-Bian)Ga(μ2-NPh)2Ga(dpp-Bian) (7). Paramagnetic compounds 2-7 were characterized by electron spin resonance spectroscopy, and their molecular structures were established by single-crystal X-ray analysis. Magnetic behavior of compounds 2, 5, and 6 was investigated by superconducting quantum interference device technique in the range of 2-295 K.
Inorganic Chemistry | 2015
Alexander V. Piskunov; Irina V. Ershova; Artem S. Bogomyakov; A. G. Starikov; Georgy K. Fukin; V. K. Cherkasov
A number of pentacoordinated gallium complexes iSQ2GaR (1-7) (R = Et (1), Me (2), N3 (3), Cl (4), Br (5), I (6), NCS (7)) where iSQ is a radical anion of 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone were synthesized, and crystalline samples of 1-7 were characterized using magnetic susceptibility measurements. The character of magnetic exchange interaction between spins of o-iminosemiquinonate radicals was found to be strongly influenced by the nature of the apical substituent. The antiferromagnetic coupling is predominant when the apical position is occupied by halogens or other tested inorganic anions, and the value of exchange interaction parameter varies from -99 to -176 K for R = I and NCS, respectively. In the case of alkyl groups the ferromagnetic exchange prevails and, as the result, the triplet ground state for pentacoordianted biradical compounds was observed. Compounds 1-7 demonstrate a biradical X-band EPR spectrum in frozen toluene matrix. The molecular structures of 4, 6, and 7 have been established by single-crystal X-ray analysis. A computational DFT UB3LYP/6-31G(d,p) study was performed on complexes 1-7 in order to understand the reason for changes in the magnetic behavior of the related diradical gallium compounds. The calculations showed that the magnetic behavior of the complexes with inorganic anions is conditioned by the presence of antiferromagnetic exchange channel formed as a consequence of overlapping between donor atomic orbitals of iminoquinone with π-orbitals of halogen atoms (4-6) or nitrogen atom (3, 7).
Chemistry: A European Journal | 2018
Igor L. Fedushkin; Vladimir A. Dodonov; Alexandra A. Skatova; Vladimir G. Sokolov; Alexander V. Piskunov; Georgii K. Fukin
The reaction of digallane (dpp-bian)Ga-Ga(dpp-bian) (2) (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with allyl chloride (AllCl) proceeded by a two-electron oxidative addition to afford paramagnetic complexes (dpp-bian)Ga(η1 -All)Cl (3) and (dpp-bian)(Cl)Ga-Ga(Cl)(dpp-bian) (4). Treatment of complex 4 with pyridine induced an intramolecular redox process, which resulted in the diamagnetic complex (dpp-bian)Ga(Py)Cl (5). In reaction with allyl bromide, complex 2 gave metal- and ligand-centered addition products (dpp-bian)Ga(η1 -All)Br (6) and (dpp-bian-All)(Br)Ga-Ga(Br)(dpp-bian-All) (7). The reaction of digallane 2 with Ph3 SnNCO afforded (dpp-bian)Ga(SnPh3 )2 (8) and (dpp-bian)(NCO)Ga-Ga(NCO)(dpp-bian) (9). Treatment of GaCl3 with (dpp-bian)Na in diethyl ether resulted in the formation of (dpp-bian)GaCl2 (10). Diorganylgallium derivatives (dpp-bian)GaR2 (R=Ph, 11; tBu, 14; Me, 15; Bn, 16) and (dpp-bian)Ga(η1 -All)R (R=nBu, 12; Cp, 13) were synthesized from complexes 3, 10, Bn2 GaCl, or tBu2 GaCl by salt metathesis. The salt elimination reaction between (dpp-bian)GaI2 (17) and tBuLi was accompanied by reduction of both the metal and the dpp-bian ligand, which resulted in digallane 2 as the final product. Similarly, the reaction of complex 10 with MentMgCl (Ment=menthyl) proceeded with reduction of the dpp-bian ligand to give the diamagnetic complex [(dpp-bian)GaCl2 ][Mg2 Cl3 (THF)6 ] (18). Compounds 11, 12, 13, 15, and 16 were thermally robust, whereas compound 14 decomposed when heated at reflux in toluene to give complex (dpp-bian-tBu)GatBu2 (19). Both complexes 7 and 19 contain R-substituted dpp-bian ligand: in the former compound the allyl group was attached to the imino-carbon atom, whereas in complex 19, the tBu group was situated on the naphthalene ring. Crystal structures of complexes 3, 8, 9, 10, 13, 14, 18, and 19 were determined by single-crystal X-ray analysis. The presence of dpp-bian radical anions in 3, 6, 8, and 10-16 was determined by ESR spectroscopy.
Acta Crystallographica Section C-crystal Structure Communications | 2001
Georgy K. Fukin; Lev N. Zakharov; S. V. Maslennikov; Alexander V. Piskunov; V. K. Cherkasov
X-ray diffraction shows that the title cadmium(II) complex, [Cd(2)(C(14)H(20)O(2))(2)(C(5)H(5)N)(6)].2C(5)H(5)N, has a dimeric structure in which two (py)(3)Cd(3,5-di-tert-butylcatecholate) units (py is pyridine) are connected by two bridging O atoms, the coordination of the Cd atoms being distorted octahedral. There are two symmetrically independent dimers in the crystal structure; one is in a general position and the other lies about an inversion centre. In both cases, the bridging Cd-O distances between the Cd-catecholate units [2.224 (2)-2.237 (2) A] are shorter than the bridging Cd-O distances within the catecholate cycle [2.273 (2)-2.281 (2) A]. The Cd-N(py) distances are 2.354 (2)-2.471 (2) A. Besides the main molecules, the crystal also contains pyridine solvate molecules.
Inorganic Chemistry | 2017
Vladimir G. Sokolov; Tatyana S. Koptseva; M. V. Moskalev; Natalia L. Bazyakina; Alexander V. Piskunov; Anton V. Cherkasov; Igor L. Fedushkin
The reaction of Cl2GaH with a sodium salt of the dpp-Bian radical-anion (dpp-Bian•-)Na (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) affords paramagnetic gallane (dpp-Bian•-)Ga(Cl)H (1). Oxidation of (dpp-Bian2-)Ga-Ga(dpp-Bian2-) (2) with N2O results in the dimeric oxide (dpp-Bian•-)Ga(μ2-O)2Ga(dpp-Bian•-) (3). A treatment of the oxide 3 with phenylsilane affords paramagnetic gallium hydrides (dpp-Bian•-)GaH2 (4) and (dpp-Bian•-)Ga{OSi(Ph)H2}H (5) depending on the reagents stoichiometry. The reaction of digallane 2 with benzaldehyde produces pinacolate (dpp-Bian•-)Ga(O2C2H2Ph2) (6). In the presence of PhSiH3, the reaction between digallane 2 and benzaldehyde (2: PhSiH3: PhC(H)O = 1:4:4) affords compound 4. The newly prepared complexes 1, 3-6 consist of a spin-labeled diimine ligand-dpp-Bian radical-anion. The presence of the ligand-localized unpaired electron allows the use of the ESR spectroscopy for characterization of the gallium hydrides reported. The molecular structures of compounds 1, 3-6 have been determined by the single-crystal X-ray analysis.
Angewandte Chemie | 2007
Igor L. Fedushkin; Alexandra A. Skatova; Sergey Yu. Ketkov; Olga V. Eremenko; Alexander V. Piskunov; Georgy K. Fukin
Organometallics | 2009
Igor L. Fedushkin; Olga V. Eremenko; Alexandra A. Skatova; Alexander V. Piskunov; Georgi K. Fukin; Sergey Yu. Ketkov; Elisabeth Irran
Inorganica Chimica Acta | 2005
A. V. Lado; Andrey I. Poddel’sky; Alexander V. Piskunov; Georgy K. Fukin; Evgenii V. Baranov; V. N. Ikorskii; V. K. Cherkasov; G. A. Abakumov