Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Vogetseder is active.

Publication


Featured researches published by Alexander Vogetseder.


The Journal of Clinical Endocrinology and Metabolism | 2013

MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas.

Matthias Dettmer; Alexander Vogetseder; Mary Beth Durso; Holger Moch; Paul Komminoth; Aurel Perren; Yuri E. Nikiforov; Marina N. Nikiforova

OBJECTIVE The most difficult thyroid tumors to be diagnosed by cytology and histology are conventional follicular carcinomas (cFTCs) and oncocytic follicular carcinomas (oFTCs). Several microRNAs (miRNAs) have been previously found to be consistently deregulated in papillary thyroid carcinomas; however, very limited information is available for cFTC and oFTC. The aim of this study was to explore miRNA deregulation and find candidate miRNA markers for follicular carcinomas that can be used diagnostically. DESIGN Thirty-eight follicular thyroid carcinomas (21 cFTCs, 17 oFTCs) and 10 normal thyroid tissue samples were studied for expression of 381 miRNAs using human microarray assays. Expression of deregulated miRNAs was confirmed by individual RT-PCR assays in all samples. In addition, 11 follicular adenomas, two hyperplastic nodules (HNs), and 19 fine-needle aspiration samples were studied for expression of novel miRNA markers detected in this study. RESULTS The unsupervised hierarchical clustering analysis demonstrated individual clusters for cFTC and oFTC, indicating the difference in miRNA expression between these tumor types. Both cFTCs and oFTCs showed an up-regulation of miR-182/-183/-221/-222/-125a-3p and a down-regulation of miR-542-5p/-574-3p/-455/-199a. Novel miRNA (miR-885-5p) was found to be strongly up-regulated (>40-fold) in oFTCs but not in cFTCs, follicular adenomas, and HNs. The classification and regression tree algorithm applied to fine-needle aspiration samples demonstrated that three dysregulated miRNAs (miR-885-5p/-221/-574-3p) allowed distinguishing follicular thyroid carcinomas from benign HNs with high accuracy. CONCLUSIONS In this study we demonstrate that different histopathological types of follicular thyroid carcinomas have distinct miRNA expression profiles. MiR-885-5p is highly up-regulated in oncocytic follicular carcinomas and may serve as a diagnostic marker for these tumors. A small set of deregulated miRNAs allows for an accurate discrimination between follicular carcinomas and hyperplastic nodules and can be used diagnostically in fine-needle aspiration biopsies.


International Journal of Cancer | 2013

αv‐Integrin isoform expression in primary human tumors and brain metastases

Alexander Vogetseder; Svenja Thies; Barbara Ingold; Patrick Roth; Michael Weller; Peter Schraml; Simon Goodman; Holger Moch

To determine whether metastasis to brain is associated with altered expression patterns of integrins, we investigated the expression of αvβ3, αvβ5, αvβ6 and αvβ8 integrins in primary malignancies and metastases to brain of breast, lung and renal carcinomas and in malignant melanoma. Inhibitors of αv integrins are currently in clinical trials for glioblastoma. The role of integrins in the process of brain metastasis from other human tumors is unknown. Immunohistochemistry with novel integrin subtype specific rabbit monoclonal antibodies was performed on tissue microarrays of archival material of surgical biopsies taken from primary tumors and brain metastases. Integrin αvβ3 expression was increased in brain metastases compared to primary tumors of breast adenocarcinoma, non‐small cell lung cancer, renal clear cell cancer and malignant cutaneous melanoma (all p < 0.01). Similarly, integrin αvβ8 expression was increased in brain metastases compared to primary tumors of breast cancer (p < 0.0001), lung cancer (p < 0.01) and renal cancer (p < 0.0001), with a similar trend in metastatic melanoma. Integrin αvβ5 was expressed in most primary tumors (98% breast cancer; 67% lung cancer; 90% renal cancer; 89% melanoma) and showed a stronger expression in brain metastases compared to primary tumors from lung cancer and melanoma (p < 0.05). Also integrin αvβ6 expression was increased in brain metastases compared to primary breast cancer (p < 0.001). Conclusions: The stronger αv‐integrin expression in brain metastases, especially of αvβ3 and αvβ8 integrins, suggests that certain αv integrin are involved in the process of brain metastasis. αv Integrins may be therapeutic targets for patients with metastatic cancer in brain.


Tropical Medicine & International Health | 2004

Time course of coagulation parameters, cytokines and adhesion molecules in Plasmodium falciparum malaria

Alexander Vogetseder; Caroline Ospelt; Markus Reindl; Maria Schober; Erich Schmutzhard

We studied 38 patients with malaria tropica over a period of 5 days during antiparasitic therapy. Serum or plasma levels of interleukin (IL) 1β, IL‐6, IL‐10, tumour necrosis factor‐α (TNF‐α), the soluble vascular adhesion molecule (sVCAM) and the soluble intracellular adhesion molecule (sICAM) were determined by enzyme‐linked immunosorbent assay. Protein C and antithrombin III activity were analysed by chromogenic tests and protein S activity by a clotting test. Antithrombin III, protein C and protein S activity was significantly lower in patients with severe malaria and displayed a highly significant increase in activity over the time of evaluation. Levels of sVCAM and sICAM were increased for the whole study period, but no significant differences were found between severe and mild malaria cases. Serum IL‐1β, IL‐6 and IL‐10 levels were significantly higher in patients with severe malaria, whereas no significant differences were found for TNF‐α. IL‐6 and IL‐10 decreased significantly over 5 days during schizontocidal therapy. Our data show an impairment of the coagulation system which correlates with pro‐inflammatory cytokines and therefore with the severity of the disease.


American Journal of Physiology-renal Physiology | 2009

Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease

Ming Wu; Alexandre Arcaro; Zsuzsanna Varga; Alexander Vogetseder; Michel Le Hir; Rudolf P. Wüthrich; Andreas L. Serra

The efficacy of mammalian target of rapamycin (mTOR) inhibitors is currently tested in patients affected by autosomal dominant polycystic kidney disease. Treatment with mTOR inhibitors has been associated with numerous side effects. However, the renal-specific effect of mTOR inhibitor treatment cessation in polycystic kidney disease is currently unknown. Therefore, we compared pulse and continuous everolimus treatment in Han:SPRD rats. Four-week-old male heterozygous polycystic and wild-type rats were administered everolimus or vehicle by gavage feeding for 5 wk, followed by 7 wk without treatment, or continuously for 12 wk. Cessation of everolimus did not result in the appearance of renal cysts up to 7 wk postwithdrawal despite the reemergence of S6 kinase activity coupled with an overall increase in cell proliferation. Pulse everolimus treatment resulted in striking noncystic renal parenchymal enlargement and glomerular hypertrophy that was not associated with compromised kidney function. Both treatment regimens ameliorated kidney function, preserved the glomerular-tubular connection, and reduced proteinuria. Pulse treatment at an early age delays cyst development but leads to striking glomerular and parenchymal hypertrophy. Our data might have an impact when long-term treatment using mTOR inhibitors in patients with autosomal dominant polycystic kidney disease is being considered.


Human Pathology | 2010

Cell adhesion molecules P-cadherin and CD24 are markers for carcinoma and dysplasia in the biliary tract ☆

Marc-Oliver Riener; Alexander Vogetseder; Bernhard C. Pestalozzi; Pierre-Alain Clavien; Nicole Probst-Hensch; Glen Kristiansen; Wolfram Jochum

P-cadherin (CDH3) and CD24 are cell adhesion molecules that control morphogenic processes, cell motility, and invasive growth of tumor cells. The aim of our study was to investigate P-cadherin and CD24 expression in carcinomas and dysplastic lesions of the biliary tract and to evaluate the potential diagnostic usefulness of these cell adhesion molecules. Using immunohistochemistry on tissue microarrays, we analyzed P-cadherin, CD24, and p53 expression in 117 carcinomas of the biliary tract (19 intrahepatic cholangiocarcinomas, 59 extrahepatic cholangiocarcinomas, and 39 gallbladder carcinomas) and correlated our findings with clinicopathologic parameters. We found P-cadherin positivity in 37% of intrahepatic cholangiocarcinomas, 73% of extrahepatic cholangiocarcinomas, and 64% of gallbladder carcinomas, respectively. CD24 reactivity was observed in 21% of intrahepatic cholangiocarcinomas, 58% of extrahepatic cholangiocarcinomas, and 42% of gallbladder carcinomas. Nuclear p53 expression was found in 37% of intrahepatic cholangiocarcinomas, 46% of extrahepatic cholangiocarcinomas, and 45% of gallbladder carcinomas. We also studied P-cadherin, CD24, and p53 expression in normal (n = 30), inflamed (n = 22), and dysplastic (n = 21) biliary epithelium of extrahepatic bile ducts. Dysplastic biliary epithelium was positive for P-cadherin in 91%, for CD24 in 71%, and for p53 in 24% of lesions, respectively. In contrast, normal and inflamed epithelia were negative for all 3 proteins. We conclude that P-cadherin and CD24 are expressed in carcinomas of the biliary tract with high frequency and at an early stage of carcinogenesis. Therefore, they may be useful markers for early detection and as targets for therapy of cholangiocarcinoma.


Nephrology | 2007

Mitotic activation of Akt signalling pathway in Han:SPRD rats with polycystic kidney disease

Patricia R. Wahl; Michel Le Hir; Alexander Vogetseder; Alexandre Arcaro; Astrid Starke; Ying Waeckerle-Men; Andreas L. Serra; Rudolf P. Wüthrich

Aim:  Autosomal dominant polycystic kidney disease (ADPKD) is characterized by an imbalance between tubular epithelial cell proliferation and apoptosis. We have previously shown that the mammalian target of rapamycin (mTOR) signalling pathway is aberrantly activated in the cystic kidneys of Han:SPRD rats with ADPKD. Because the Akt kinase is an upstream regulator of mTOR, we hypothesized that the activity of Akt could be enhanced in the kidneys of Han:SPRD rats.


Annals of the Rheumatic Diseases | 2014

Smoking induces transcription of the heat shock protein system in the joints

Caroline Ospelt; Giovanni G. Camici; Anna Engler; Christoph Kolling; Alexander Vogetseder; Beat A. Michel

Objectives Smoking increases the risk of developing rheumatoid arthritis (RA) and worsens the course of the disease. In the current study we analysed whether smoking can affect gene expression directly in the joints. Methods Synovial fibroblasts were incubated with 5% cigarette smoke extract and changes in gene expression were detected using whole genome microarrays and verified with real-time PCR. Synovial tissues were obtained from smoking and non-smoking patients with RA undergoing joint replacement surgery and from mice exposed to cigarette smoke or ambient air in a whole body exposure chamber for 3 weeks. Results Microarray and real-time PCR analysis showed a significant upregulation of the heat shock proteins DnaJA4, DnaJB4, DnaJC6, HspB8 and Hsp70 after stimulation of synovial fibroblasts with 5% cigarette smoke extract. Similarly, in synovial tissues of smokers with RA the expression of DnaJB4, DnaJC6, HspB8 and Hsp70 was significantly higher compared with non-smokers with RA. Upregulation of DnaJB4 and DnaJC6 in joints by smoking was also confirmed in mice exposed to cigarette smoke. Conclusions Our data clearly show that smoking can change gene expression in the joints, which can lead to the activation of signalling pathways that promote development of autoimmunity and chronic joint inflammation.


Cellular Oncology | 2014

eIF3a is over-expressed in urinary bladder cancer and influences its phenotype independent of translation initiation

Rita Spilka; Christina Ernst; Helmut Bergler; Johannes Rainer; Susanne Flechsig; Alexander Vogetseder; Eva Lederer; Martin Benesch; Andrea Brunner; Stephan Geley; Andreas Eger; Felix Bachmann; Wolfgang Doppler; Peter Obrist; Johannes Haybaeck

PurposeThe eukaryotic translation initiation factor (eIF) 3a, the largest subunit of the eIF3 complex, is a key functional entity in ribosome establishment and translation initiation. In the past, aberrant eIF3a expression has been linked to the pathology of various cancer types but, so far, its expression has not been investigated in transitional cell carcinomas. Here, we investigated the impact of eIF3 expression on urinary bladder cancer (UBC) cell characteristics and UBC patient survival.Methods and resultseIF3a expression was reduced through inducible knockdown in the UBC-derived cell lines RT112, T24, 5637 and HT1197. As a consequence of eIF3a down-regulation, UBC cell proliferation, clonogenic potential and motility were found to be decreased and, concordantly, UBC tumour cell growth rates were found to be impaired in xenotransplanted mice. Polysomal profiling revealed that reduced eIF3a levels increased the abundance of 80S ribosomes, rather than impairing translation initiation. Microarray-based gene expression and ontology analyses revealed broad effects of eIF3a knockdown on the transcriptome. Analysis of eIF3a expression in primary formalin-fixed paraffin embedded UBC samples of 198 patients revealed that eIF3a up-regulation corresponds to tumour grade and that high eIF3a expression corresponds to longer overall survival rates of patients with low grade tumours.ConclusionsFrom our results we conclude that eIF3a expression may have a profound effect on the UBC phenotype and, in addition, may serve as a prognostic marker for low grade UBCs.


Journal of Oncology | 2012

Overexpression of eIF3a in Squamous Cell Carcinoma of the Oral Cavity and Its Putative Relation to Chemotherapy Response

Rita Spilka; Klaus Laimer; Felix Bachmann; Gilbert Spizzo; Alexander Vogetseder; Manuel Wieser; Heimo Müller; Johannes Haybaeck; Peter Obrist

The eukaryotic translation initiation factor eIF3a is one of the core subunits of the translation initiation complex eIF3, responsible for ribosomal subunit joining and mRNA recruitment to the ribosome. It is known to play an important role in general translation initiation as well as in the specific translational regulation of various gene products, among which many influence tumour development, progression, and the therapeutically important pathways of DNA damage repair. Therefore, beyond its role in protein synthesis, eIF3a is emerging as regulator in tumour pathogenesis and therapy response and, therefore, a potential tumor marker. By means of a tissue microarray (TMA) for histopathological and statistical assessment, we here show eIF3a expression in 103 cases of squamous cell carcinoma of the oral cavity (OSCC), representing tissues from 103 independent patients. A subset of the study cohort was treated with platinum based therapy. Our results show that the 170 kDa protein is upregulated in OSCC and correlates with good overall survival. Overexpressing tumors respond better to platinum-based chemotherapy, suggesting eIF3a as a putative predictive as well as prognostic tumor marker in OSCC.


Histochemistry and Cell Biology | 2007

Immunolocalization of phospho-S6 kinases: a new way to detect mitosis in tissue sections and in cell culture

Thomas Schmidt; Patricia R. Wahl; Rudolf P. Wüthrich; Alexander Vogetseder; Nicolas Picard; Brigitte Kaissling; Michel Le Hir

During a study on the mTor pathway in the rat kidney we observed a striking increase of the phosphorylation of the S6 kinase in mitosis. In cryostat sections of perfusion-fixed tissue mitotic cells appeared as bright spots in immunofluorescence using an antibody specific for the phosphorylation site Thr421/Ser424. They were easily spotted in overviews with the objective 4× and 10×. Immunofluorescence was weak during the interphase. During the prophase it increased in both the nucleus and the cytoplasm and it remained bright during the subsequent phases of mitosis. All mitotic cells which were found in tubules and in the interstitium of the kidney using a chromatin stain displayed the bright immunofluorescence for phospho-S6 kinase. The same phenomenon was observed in rat liver and in mouse kidney as well as in a human cell line. Provided a rapid fixation, mitotic cells could be identified with the immunoperoxidase technique in paraffin sections of immersion-fixed tissue. This is the first report of phosphorylation of S6 kinase during mitosis in vivo. Thus, immunohistochemistry with anti-phospho-S6 kinase (Thr421/Ser424) appears to provide a convenient way to detect mitotic cells at low magnification.

Collaboration


Dive into the Alexander Vogetseder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge