Alexander W. Röck
Innsbruck Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander W. Röck.
Genome Research | 2012
Martin Bodner; Ugo A. Perego; Gabriela Huber; Liane Fendt; Alexander W. Röck; Bettina Zimmermann; Anna Olivieri; Alberto Gómez-Carballa; Hovirag Lancioni; Norman Angerhofer; María Cecilia Bobillo; Daniel Corach; Scott R. Woodward; Antonio Salas; Alessandro Achilli; Antonio Torroni; Hans-Jürgen Bandelt; Walther Parson
It is now widely agreed that the Native American founders originated from a Beringian source population ~15-18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America.
Forensic Science International-genetics | 2013
Alexander W. Röck; Arne Dür; Mannis van Oven; Walther Parson
The assignment of haplogroups to mitochondrial DNA haplotypes contributes substantial value for quality control, not only in forensic genetics but also in population and medical genetics. The availability of Phylotree, a widely accepted phylogenetic tree of human mitochondrial DNA lineages, led to the development of several (semi-)automated software solutions for haplogrouping. However, currently existing haplogrouping tools only make use of haplogroup-defining mutations, whereas private mutations (beyond the haplogroup level) can be additionally informative allowing for enhanced haplogroup assignment. This is especially relevant in the case of (partial) control region sequences, which are mainly used in forensics. The present study makes three major contributions toward a more reliable, semi-automated estimation of mitochondrial haplogroups. First, a quality-controlled database consisting of 14,990 full mtGenomes downloaded from GenBank was compiled. Together with Phylotree, these mtGenomes serve as a reference database for haplogroup estimates. Second, the concept of fluctuation rates, i.e. a maximum likelihood estimation of the stability of mutations based on 19,171 full control region haplotypes for which raw lane data is available, is presented. Finally, an algorithm for estimating the haplogroup of an mtDNA sequence based on the combined database of full mtGenomes and Phylotree, which also incorporates the empirically determined fluctuation rates, is brought forward. On the basis of examples from the literature and EMPOP, the algorithm is not only validated, but both the strength of this approach and its utility for quality control of mitochondrial haplotypes is also demonstrated.
International Journal of Legal Medicine | 2010
Jodi A. Irwin; Abror Ikramov; Jessica L. Saunier; Martin Bodner; Sylvain Amory; Alexander W. Röck; Jennifer E. O’Callaghan; Abdurakhmon Nuritdinov; Sattar Atakhodjaev; Rustam Mukhamedov; Walther Parson; Thomas J. Parsons
In order to better characterize and understand the mtDNA population genetics of Central Asia, the mtDNA control regions of over 1,500 individuals from Uzbekistan have been sequenced. Although all samples were obtained from individuals residing in Uzbekistan, individuals with direct ancestry from neighboring Central Asian countries are included. Individuals of Uzbek ancestry represent five distinct geographic regions of Uzbekistan: Fergana, Karakalpakstan, Khorezm, Qashkadarya, and Tashkent. Individuals with direct ancestry in nearby countries originate from Kazakhstan, Kyrgyzstan, Russia, Afghanistan, Turkmenistan, and Tajikistan. Our data reinforce the evidence of distinct clinal patterns that have been described among Central Asian populations with classical, mtDNA, and Y-chromosomal markers. Our data also reveal hallmarks of recent demographic events. Despite their current close geographic proximity, the populations with ancestry in neighboring countries show little sign of admixture and retain the primary mtDNA patterns of their source populations. The genetic distances and haplogroup distributions among the ethnic populations are more indicative of a broad east–west cline among their source populations than of their relatively small geographic distances from one another in Uzbekistan. Given the significant mtDNA heterogeneity detected, our results emphasize the need for heightened caution in the forensic interpretation of mtDNA data in regions as historically rich and genetically diverse as Central Asia.
BMC Evolutionary Biology | 2008
Anita Brandstätter; Bettina Zimmermann; Janine Wagner; Tanja Göbel; Alexander W. Röck; Antonio Salas; Angel Carracedo; Walther Parson
BackgroundNearly half of the West Eurasian assemblage of human mitochondrial DNA (mtDNA) is fractioned into numerous sub-lineages of the predominant haplogroup (hg) R0. Several hypotheses have been proposed on the origin and the expansion times of some R0 sub-lineages, which were partially inconsistent with each other. Here we describe the phylogenetic structure and genetic variety of hg R0 in five European populations and one population from the Middle East.ResultsOur analysis of 1,350 mtDNA haplotypes belonging to R0, including entire control region sequences and 45 single nucleotide polymorphisms from the coding region, revealed significant differences in the distribution of different sub-hgs even between geographically closely located regions. Estimates of coalescence times that were derived using diverse algorithmic approaches consistently affirmed that the major expansions of the different R0 hgs occurred in the terminal Pleistocene and early Holocene.ConclusionGiven an estimated coalescence time of the distinct lineages of 10 – 18 kya, the differences in the distributions could hint to either limited maternal gene flow after the Last Glacial Maximum due to the alpine nature of the regions involved or to a stochastic loss of diversity due to environmental events and/or disease episodes occurred at different times and in distinctive regions. Our comparison of two different ways of obtaining the timing of the most recent common ancestor confirms that the time of a sudden expansion can be adequately recovered from control region data with valid confidence intervals. For reliable estimates, both procedures should be applied in order to cross-check the results for validity and soundness.
International Journal of Legal Medicine | 2010
María Cecilia Bobillo; Bettina Zimmermann; Andrea Sala; Gabriela Huber; Alexander W. Röck; Hans-Jürgen Bandelt; Daniel Corach; Walther Parson
The study presents South American mitochondrial DNA (mtDNA) data from selected north (N = 98), central (N = 193) and south (N = 47) Argentinean populations. Sequence analysis of the complete mtDNA control region (CR, 16024–576) resulted in 288 unique haplotypes ignoring C-insertions around positions 16193, 309, and 573; the additional analysis of coding region single nucleotide polymorphisms enabled a fine classification of the described lineages. The Amerindian haplogroups were most frequent in the north and south representing more than 60% of the sequences. A slightly different situation was observed in central Argentina where the Amerindian haplogroups represented less than 50%, and the European contribution was more relevant. Particular clades of the Amerindian subhaplogroups turned out to be nearly region-specific. A minor contribution of African lineages was observed throughout the country. This comprehensive admixture of worldwide mtDNA lineages and the regional specificity of certain clades in the Argentinean population underscore the necessity of carefully selecting regional samples in order to develop a nationwide mtDNA database for forensic and anthropological purposes. The mtDNA sequencing and analysis were performed under EMPOP guidelines in order to attain high quality for the mtDNA database.
Breast Cancer Research and Treatment | 2011
Liane Fendt; Harald Niederstätter; Gabriela Huber; Bettina Zelger; Martina Dünser; Christof Seifarth; Alexander W. Röck; Georg Schäfer; Helmut Klocker; Walther Parson
The occurrence of heteroplasmy and mixtures is technically challenging for the analysis of mitochondrial DNA. More than that, observed mutations need to be carefully interpreted in the light of the phylogeny as mitochondrial DNA is a uniparental marker reflecting human evolution. Earlier attempts to explain the role of mtDNA in cancerous tissues led to substantial confusion in medical genetics mainly due to the presentation of low sequence data quality and misinterpretation of mutations representing a particular haplogroup background rather than being cancer-specific. The focus of this study is to characterize the extent and level of mutations in breast cancer samples obtained by tissue microdissection by application of an evaluated full mtDNA genome sequencing protocol. We amplified and sequenced the complete mitochondrial genomes of microdissected breast cancer cells of 15 patients and compared the results to those obtained from paired non-cancerous breast tissue derived from the same patients. We observed differences in the heteroplasmic states of substitutions between cancerous and normal cells, one of which was affecting a position that has been previously reported in lung cancer and another one that has been identified in 16 epithelial ovarian tumors, possibly indicating functional relevance. In the coding region, we found full transitions in two cancerous mitochondrial genomes and 12 heteroplasmic substitutions as compared to the non-cancerous breast cells. We identified somatic mutations over the entire mtDNA of human breast cancer cells potentially impairing the mitochondrial OXPHOS system.
BMC Evolutionary Biology | 2011
Martin Bodner; Bettina Zimmermann; Alexander W. Röck; Anita Kloss-Brandstätter; David Horst; Basil Horst; Sourideth Sengchanh; Torpong Sanguansermsri; Jürgen Horst; Tanja Krämer; Peter M. Schneider; Walther Parson
BackgroundVast migrations and subsequent assimilation processes have shaped the genetic composition of Southeast Asia, an area of close contact between several major ethnic groups. To better characterize the genetic variation of this region, we analyzed the entire mtDNA control region of 214 unrelated donors from Laos according to highest forensic quality standards. To detail the phylogeny, we inspected selected SNPs from the mtDNA coding region. For a posteriori data quality control, quasi-median network constructions and autosomal STR typing were performed. In order to describe the mtDNA setup of Laos more thoroughly, the data were subjected to population genetic comparisons with 16 East Asian groups.ResultsThe Laos sample exhibited ample mtDNA diversity, reflecting the huge number of ethnic groups listed. We found several new, so far undescribed mtDNA lineages in this dataset and surrounding populations. The Laos population was characteristic in terms of haplotype composition and genetic structure, however, genetic comparisons with other Southeast Asian populations revealed limited, but significant genetic differentiation. Notable differences in the maternal relationship to the major indigenous Southeast Asian ethnolinguistic groups were detected.ConclusionsIn this study, we portray the great mtDNA variety of Laos for the first time. Our findings will contribute to clarify the migration history of the region. They encourage setting up regional and subpopulation databases, especially for forensic applications. The Laotian sequences will be incorporated into the collaborative EMPOP mtDNA database http://www.empop.org upon publication and will be available as the first mtDNA reference data for this country.
BMC Evolutionary Biology | 2010
Eric Crubézy; Sylvain Amory; Christine Keyser; Caroline Bouakaze; Martin Bodner; Morgane Gibert; Alexander W. Röck; Walther Parson; Anatoly Alexeev; Bertrand Ludes
BackgroundThe Yakuts contrast strikingly with other populations from Siberia due to their cattle- and horse-breeding economy as well as their Turkic language. On the basis of ethnological and linguistic criteria as well as population genetic studies, it has been assumed that they originated from South Siberian populations. However, many questions regarding the origins of this intriguing population still need to be clarified (e.g. the precise origin of paternal lineages and the admixture rate with indigenous populations). This study attempts to better understand the origins of the Yakuts by performing genetic analyses on 58 mummified frozen bodies dated from the 15th to the 19th century, excavated from Yakutia (Eastern Siberia).ResultsHigh quality data were obtained for the autosomal STRs, Y-chromosomal STRs and SNPs and mtDNA due to exceptional sample preservation. A comparison with the same markers on seven museum specimens excavated 3 to 15 years ago showed significant differences in DNA quantity and quality. Direct access to ancient genetic data from these molecular markers combined with the archaeological evidence, demographical studies and comparisons with 166 contemporary individuals from the same location as the frozen bodies helped us to clarify the microevolution of this intriguing population.ConclusionWe were able to trace the origins of the male lineages to a small group of horse-riders from the Cis-Baïkal area. Furthermore, mtDNA data showed that intermarriages between the first settlers with Evenks women led to the establishment of genetic characteristics during the 15th century that are still observed today.
Forensic Science International-genetics | 2015
Rebecca S. Just; Melissa Scheible; Spence A. Fast; Kimberly Sturk-Andreaggi; Alexander W. Röck; Jocelyn M. Bush; Jennifer L. Higginbotham; Michelle A. Peck; Joseph D. Ring; Gabriela E. Huber; Catarina Xavier; Christina Strobl; Elizabeth A. Lyons; Toni M. Diegoli; Martin Bodner; Liane Fendt; Petra Kralj; Simone Nagl; Daniela Niederwieser; Bettina Zimmermann; Walther Parson; Jodi A. Irwin
Though investigations into the use of massively parallel sequencing technologies for the generation of complete mitochondrial genome (mtGenome) profiles from difficult forensic specimens are well underway in multiple laboratories, the high quality population reference data necessary to support full mtGenome typing in the forensic context are lacking. To address this deficiency, we have developed 588 complete mtGenome haplotypes, spanning three U.S. population groups (African American, Caucasian and Hispanic) from anonymized, randomly-sampled specimens. Data production utilized an 8-amplicon, 135 sequencing reaction Sanger-based protocol, performed in semi-automated fashion on robotic instrumentation. Data review followed an intensive multi-step strategy that included a minimum of three independent reviews of the raw data at two laboratories; repeat screenings of all insertions, deletions, heteroplasmies, transversions and any additional private mutations; and a check for phylogenetic feasibility. For all three populations, nearly complete resolution of the haplotypes was achieved with full mtGenome sequences: 90.3-98.8% of haplotypes were unique per population, an improvement of 7.7-29.2% over control region sequencing alone, and zero haplotypes overlapped between populations. Inferred maternal biogeographic ancestry frequencies for each population and heteroplasmy rates in the control region were generally consistent with published datasets. In the coding region, nearly 90% of individuals exhibited length heteroplasmy in the 12418-12425 adenine homopolymer; and despite a relatively high rate of point heteroplasmy (23.8% of individuals across the entire molecule), coding region point heteroplasmies shared by more than one individual were notably absent, and transversion-type heteroplasmies were extremely rare. The ratio of nonsynonymous to synonymous changes among point heteroplasmies in the protein-coding genes (1:1.3) and average pathogenicity scores in comparison to data reported for complete substitutions in previous studies seem to provide some additional support for the role of purifying selection in the evolution of the human mtGenome. Overall, these thoroughly vetted full mtGenome population reference data can serve as a standard against which the quality and features of future mtGenome datasets (especially those developed via massively parallel sequencing) may be evaluated, and will provide a solid foundation for the generation of complete mtGenome haplotype frequency estimates for forensic applications.
Forensic Science International-genetics | 2011
Alexander W. Röck; Jodi A. Irwin; Arne Dür; Thomas J. Parsons; Walther Parson
The analysis of the haploid mitochondrial (mt) genome has numerous applications in forensic and population genetics, as well as in disease studies. Although mtDNA haplotypes are usually determined by sequencing, they are rarely reported as a nucleotide string. Traditionally they are presented in a difference-coded position-based format relative to the corrected version of the first sequenced mtDNA. This convention requires recommendations for standardized sequence alignment that is known to vary between scientific disciplines, even between laboratories. As a consequence, database searches that are vital for the interpretation of mtDNA data can suffer from biased results when query and database haplotypes are annotated differently. In the forensic context that would usually lead to underestimation of the absolute and relative frequencies. To address this issue we introduce SAM, a string-based search algorithm that converts query and database sequences to position-free nucleotide strings and thus eliminates the possibility that identical sequences will be missed in a database query. The mere application of a BLAST algorithm would not be a sufficient remedy as it uses a heuristic approach and does not address properties specific to mtDNA, such as phylogenetically stable but also rapidly evolving insertion and deletion events. The software presented here provides additional flexibility to incorporate phylogenetic data, site-specific mutation rates, and other biologically relevant information that would refine the interpretation of mitochondrial DNA data. The manuscript is accompanied by freeware and example data sets that can be used to evaluate the new software (http://stringvalidation.org).