Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandr Sember is active.

Publication


Featured researches published by Alexandr Sember.


BMC Evolutionary Biology | 2013

Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications

Radka Symonová; Zuzana Majtánová; Alexandr Sember; Georg Bo Staaks; Jörg Bohlen; Jörg Freyhof; Marie Rábová; Petr Ráb

BackgroundSympatric species pairs are particularly common in freshwater fishes associated with postglacial lakes in northern temperate environments. The nature of divergences between co-occurring sympatric species, factors contributing to reproductive isolation and modes of genome evolution is a much debated topic in evolutionary biology addressed by various experimental tools. To the best of our knowledge, nobody approached this field using molecular cytogenetics. We examined chromosomes and genomes of one postglacial species pair, sympatric European winter-spawning Coregonus albula and the local endemic dwarf-sized spring-spawning C. fontanae, both originating in Lake Stechlin. We have employed molecular cytogenetic tools to identify the genomic differences between the two species of the sympatric pair on the sub-chromosomal level of resolution.ResultsFluorescence in situ hybridization (FISH) experiments consistently revealed a distinct variation in the copy number of loci of the major ribosomal DNA (the 45S unit) between C. albula and C. fontanae genomes. In C. fontanae, up to 40 chromosomes were identified to bear a part of the major ribosomal DNA, while in C. albula only 8–10 chromosomes possessed these genes. To determine mechanisms how such extensive genome alternation might have arisen, a PCR screening for retrotransposons from genomic DNA of both species was performed. The amplified retrotransposon Rex1 was used as a probe for FISH mapping onto chromosomes of both species. These experiments showed a clear co-localization of the ribosomal DNA and the retrotransposon Rex1 in a pericentromeric region of one or two acrocentric chromosomes in both species.ConclusionWe demonstrated genomic consequences of a rapid ecological speciation on the level undetectable by neither sequence nor karyotype analysis. We provide indirect evidence that ribosomal DNA probably utilized the spreading mechanism of retrotransposons subsequently affecting recombination rates in both genomes, thus, leading to a rapid genome divergence. We attribute these extensive genome re-arrangements associated with speciation event to stress-induced retrotransposons (re)activation. Such causal interplay between genome differentiation, retrotransposons (re)activation and environmental conditions may become a topic to be explored in a broader genomic context in future evolutionary studies.


Cytogenetic and Genome Research | 2013

Molecular cytogenetics in artificial hybrid and highly polyploid sturgeons: An evolutionary story narrated by repetitive sequences.

Radka Symonová; Martin Flajšhans; Alexandr Sember; Miloš Havelka; David Gela; Tereza Kořínková; Marek Rodina; Marie Rábová; Petr Ráb

We applied comparative genomic hybridization (CGH) and genomic in situ hybridization (GISH) to examine genomes of artificially produced sturgeon hybrids between sterlet, Acipenser ruthenus female (∼120 chromosomes) or Russian sturgeon, A. gueldenstaedtii female (∼240 chromosomes) and a spontaneous triploid Siberian sturgeon A. baerii male (∼360 chromosomes), respectively. The ploidy levels of progenies were analyzed by karyotyping and flow cytometry. We found that the species-specific regions were surprisingly identifiable only on some micro- and small(er) macrochromosomes in hybrid metaphases. We hypothesize that these distinguishable regions are represented by species-specific repetitive sequences driven by more dynamic molecular evolutionary mechanisms. On larger chromosomes, GISH faintly visualized only blocks of pericentromeric and telomeric repetitive sequences, remaining regions were equally shared by both parental species. We concluded that the interspecies hybridization producing viable and even fertile progeny is enabled by the fact that genomes of the species involved are likely divergent at the level of the repetitive sequences only and probably highly conserved in the coding sequences. These small differences of coding sequences are in concordance with previous estimations of relatedness of examined species producing artificial as well as natural hybrids. CGH and GISH represent a challenge in sturgeon cytogenetics as a valuable though technically not simple tool to discriminate chromosomes of parental species in hybrids. The potentials and drawbacks of CGH and GISH application in sturgeons are discussed and further experimental possibilities are proposed.


BMC Genetics | 2016

Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax

Marie Doležálková; Alexandr Sember; František Marec; Petr Ráb; Jörg Plötner; Lukáš Choleva

BackgroundThe ability to eliminate a parental genome from a eukaryotic germ cell is a phenomenon observed mostly in hybrid organisms displaying an alternative propagation to sexual reproduction. For most taxa, the underlying cellular pathways and timing of the elimination process is only poorly understood. In the water frog hybrid Pelophylax esculentus (parental taxa are P. ridibundus and P. lessonae) the only described mechanism assumes that one parental genome is excluded from the germline during metamorphosis and prior to meiosis, while only second genome enters meiosis after endoreduplication. Our study of hybrids from a P. ridibundus—P. esculentus-male populations known for its production of more types of gametes shows that hybridogenetic mechanism of genome elimination is not uniform.ResultsUsing comparative genomic hybridization (CGH) on mitotic and meiotic cell stages, we identified at least two pathways of meiotic mechanisms. One type of Pelophylax esculentus males provides supporting evidence of a premeiotic elimination of one parental genome. In several other males we record the presence of both parental genomes in the late phases of meiotic prophase I (diplotene) and metaphase I.ConclusionSome P. esculentus males have no genome elimination from the germ line prior to meiosis. Considering previous cytological and experimental evidence for a formation of both ridibundus and lessonae sperm within a single P. esculentus individual, we propose a hypothesis that genome elimination from the germline can either be postponed to the meiotic stages or absent altogether in these hybrids.


Chromosoma | 2018

Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes)

Ezequiel Aguiar de Oliveira; Alexandr Sember; Luiz Antonio Carlos Bertollo; Cassia Fernanda Yano; Tariq Ezaz; Orlando Moreira-Filho; Terumi Hatanaka; Vladimir A. Trifonov; Thomas Liehr; Ahmed Basheer Hamid Al-Rikabi; Petr Ráb; Hugmar Pains; Marcelo de Bello Cioffi

The Neotropical fish, Hoplias malabaricus, is one of the most cytogenetically studied fish taxon with seven distinct karyomorphs (A–G) comprising varying degrees of sex chromosome differentiation, ranging from homomorphic to highly differentiated simple and multiple sex chromosomes. Therefore, this fish offers a unique opportunity to track evolutionary mechanisms standing behind the sex chromosome evolution and differentiation. Here, we focused on a high-resolution cytogenetic characterization of the unique XX/XY1Y2 multiple sex chromosome system found in one of its karyomorphs (G). For this, we applied a suite of conventional (Giemsa-staining, C-banding) and molecular cytogenetic approaches, including fluorescence in situ hybridization FISH (with 5S and 18S rDNAs, 10 microsatellite motifs and telomeric (TTAGGG)n sequences as probes), comparative genomic hybridization (CGH), and whole chromosome painting (WCP). In addition, we performed comparative analyses with other Erythrinidae species to discover the evolutionary origin of this unique karyomorph G-specific XY1Y2 multiple sex chromosome system. WCP experiments confirmed the homology between these multiple sex chromosomes and the nascent XX/XY sex system found in the karyomorph F, but disproved a homology with those of karyomorphs A–D and other closely related species. Besides, the putative origin of such XY1Y2 system by rearrangements of several chromosome pairs from an ancestral karyotype was also highlighted. In addition, clear identification of a male-specific region on the Y1 chromosome suggested a differential pattern of repetitive sequences accumulation. The present data suggested the origin of this unique XY1Y2 sex system, revealing evidences for the high level of plasticity of sex chromosome differentiation within the Erythrinidae.


Genes | 2017

Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes

Marcelo de Bello Cioffi; Cassia Fernanda Yano; Alexandr Sember; Luiz Antonio Carlos Bertollo

Fishes exhibit the greatest diversity of species among vertebrates, offering a number of relevant models for genetic and evolutionary studies. The investigation of sex chromosome differentiation is a very active and striking research area of fish cytogenetics, as fishes represent one of the most vital model groups. Neotropical fish species show an amazing variety of sex chromosome systems, where different stages of differentiation can be found, ranging from homomorphic to highly differentiated sex chromosomes. Here, we draw attention on the impact of recent developments in molecular cytogenetic analyses that helped to elucidate many unknown questions about fish sex chromosome evolution, using excellent characiform models occurring in the Neotropical region, namely the Erythrinidae family and the Triportheus genus. While in Erythrinidae distinct XY and/or multiple XY-derived sex chromosome systems have independently evolved at least four different times, representatives of Triportheus show an opposite scenario, i.e., highly conserved ZZ/ZW system with a monophyletic origin. In both cases, recent molecular approaches, such as mapping of repetitive DNA classes, comparative genomic hybridization (CGH), and whole chromosome painting (WCP), allowed us to unmask several new features linked to the molecular composition and differentiation processes of sex chromosomes in fishes.


PLOS ONE | 2016

A Ploidy Difference Represents an Impassable Barrier for Hybridisation in Animals. Is There an Exception among Botiid Loaches (Teleostei: Botiidae)?

Jörg Bohlen; Vendula Šlechtová; Vlastimil Šlechta; Vera Šlechtová; Alexandr Sember; Petr Ráb

One of the most efficient mechanisms to keep animal lineages separate is a difference in ploidy level (number of whole genome copies), since hybrid offspring from parents with different ploidy level are functionally sterile. In the freshwater fish family Botiidae, ploidy difference has been held responsible for the separation of its two subfamilies, the evolutionary tetraploid Botiinae and the diploid Leptobotiinae. Diploid and tetraploid species coexist in the upper Yangtze, the Pearl River and the Red River basins in China. Interestingly, the species ‘Botia’ zebra from the Pearl River basin combines a number of morphological characters that otherwise are found in the diploid genus Leptobotia with morphological characters of the tetraploid genus Sinibotia, therefore the aim of the present study is to test weather ‘B.’ zebra is the result of a hybridisation event between species from different subfamilies with different ploidy level. A closer morphological examination indeed demonstrates a high similarity of ‘B.’ zebra to two co-occurring species, the diploid Leptobotia guilinensis and the tetraploid Sinibotia pulchra. These two species thus could have been the potential parental species in case of a hybrid origin of ‘B.’ zebra. The morphologic analysis further reveals that ‘B.’ zebra bears even the diagnostic characters of the genera Leptobotia (Leptobotiinae) and Sinibotia (Botiinae). In contrast, a comparison of six allozyme loci between ‘B.’ zebra, L. guilinensis and S. pulchra showed only similarities between ‘B.’ zebra and S. pulchra, not between ‘B.’ zebra and L. guilinensis. Six specimens of ‘B.’ zebra that were cytogenetically analysed were tetraploid with 4n = 100. The composition of the karyotype (18% metacentric, 18% submetacentric, 36% subtelocentric and 28% acrocentric chromosomes) differs from those of L. guilinensis (12%, 24%, 20% and 44%) and S. pulchra (20%, 26%, 28% and 26%), and cannot be obtained by any combination of genomes from L. guilinensis and S. pulchra. Phylogenetic reconstructions based on sequence data of the mitochondrial cytochrome b gene and the nuclear RAG-1 gene invariably places ‘Botia’ zebra as sister species to S. pulchra, while L. guilinensis is only distantly related. The presented combination of genetic data demonstrates that ‘B.’ zebra is not the result of a hybridisation, but a species of tetraploid genus Sinibotia with a striking morphological evolution towards an enormous similarity with a co-occurring, but not directly related species. The complete lack of knowledge of the ecology of these species, their main predators or their ecological interactions hampers any conclusion regarding the evolutionary advantage of such adaptation.


Frontiers in Genetics | 2018

Sex Chromosome Evolution and Genomic Divergence in the Fish Hoplias malabaricus (Characiformes, Erythrinidae)

Alexandr Sember; Luiz Antonio Carlos Bertollo; Petr Ráb; Cassia Fernanda Yano; Terumi Hatanaka; Ezequiel Aguiar de Oliveira; Marcelo de Bello Cioffi

The Erythrinidae family (Teleostei: Characiformes) is a small Neotropical fish group with a wide distribution throughout South America, where Hoplias malabaricus corresponds to the most widespread and cytogenetically studied taxon. This species possesses significant genetic variation, as well as huge karyotype diversity among populations, as reflected by its seven major karyotype forms (i.e., karyomorphs A-G) identified up to now. Although morphological differences in their bodies are not outstanding, H. malabaricus karyomorphs are easily identified by differences in 2n, morphology and size of chromosomes, as well as by distinct evolutionary steps of sex chromosomes development. Here, we performed comparative genomic hybridization (CGH) to analyse both the intra- and inter-genomic status in terms of repetitive DNA divergence among all but one (E) H. malabaricus karyomorphs. Our results indicated that they have close relationships, but with evolutionary divergences among their genomes, yielding a range of non-overlapping karyomorph-specific signals. Besides, male-specific regions were uncovered on the sex chromosomes, confirming their differential evolutionary trajectories. In conclusion, the hypothesis that H. malabaricus karyomorphs are result of speciation events was strengthened.


PLOS ONE | 2018

Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae)

Alexandr Sember; Jörg Bohlen; Vendula Šlechtová; Marie Altmanová; Šárka Pelikánová; Petr Ráb

Polyploidization has played an important role in the evolution of vertebrates, particularly at the base of Teleostei–an enormously successful ray-finned fish group with additional genome doublings on lower taxonomic levels. The investigation of post-polyploid genome dynamics might provide important clues about the evolution and ecology of respective species and can help to decipher the role of polyploidy per se on speciation. Few studies have attempted to investigate the dynamics of repetitive DNA sequences in the post-polyploid genome using molecular cytogenetic tools in fishes, though recent efforts demonstrated their usefulness. The demonstrably monophyletic freshwater loach family Botiidae, branching to evolutionary diploid and tetraploid lineages separated >25 Mya, offers a suited model group for comparing the long-term repetitive DNA evolution. For this, we integrated phylogenetic analyses with cytogenetical survey involving Giemsa- and Chromomycin A3 (CMA3)/DAPI stainings and fluorescence in situ hybridization with 5S/45S rDNA, U2 snDNA and telomeric probes in representative sample of 12 botiid species. The karyotypes of all diploids were composed of 2n = 50 chromosomes, while majority of tetraploids had 2n = 4x = 100, with only subtle interspecific karyotype differences. The exceptional karyotype of Botia dario (2n = 4x = 96) suggested centric fusions behind the 2n reduction. Variable patterns of FISH signals revealed cases of intraspecific polymorphisms, rDNA amplification, variable degree of correspondence with CMA3+ sites and almost no phylogenetic signal. In tetraploids, either additivity or loci gain/loss was recorded. Despite absence of classical interstitial telomeric sites, large blocks of interspersed rDNA/telomeric regions were found in diploids only. We uncovered different molecular drives of studied repetitive DNA classes within botiid genomes as well as the advanced stage of the re-diploidization process in tetraploids. Our results may contribute to link genomic approach with molecular cytogenetic analyses in addressing the origin and mechanism of this polyploidization event.


Molecular Cytogenetics | 2018

Chromosomes of Asian cyprinid fishes: cytogenetic analysis of two representatives of small paleotetraploid tribe Probarbini

Pasakorn Saenjundaeng; Marcelo de Bello Cioffi; Ezequiel Aguiar de Oliveira; Alongklod Tanomtong; Weerayuth Supiwong; Sumalee Phimphan; M. J. Collares-Pereira; Alexandr Sember; Luiz Antonio Carlos Bertollo; Thomas Liehr; Cassia Fernanda Yano; Terumi Hatanaka; Petr Ráb

BackgroundPolyploidy, although still poorly explored, represents an important evolutionary event in several cyprinid clades. Herein, Catlocarpio siamensis and Probarbus jullieni - representatives of the paleotetraploid tribe Probarbini, were characterized both by conventional and molecular cytogenetic methods.ResultsAlike most other paleotetraploid cyprinids (with 2n = 100), both species studied here shared 2n = 98 but differed in karyotypes: C. siamensis displayed 18m + 34sm + 46st/a; NF = 150, while P. jullieni exhibited 26m + 14sm + 58st/a; NF = 138. Fluorescence in situ hybridization (FISH) with rDNA probes revealed two (5S) and eight (18S) signals in C. siamensis, respectively, and six signals for both probes in P. jullieni. FISH with microsatellite motifs evidenced substantial genomic divergence between both species. The almost doubled size of the chromosome pairs #1 in C. siamensis and #14 in P. jullieni compared to the rest of corresponding karyotypes indicated chromosomal fusions.ConclusionBased on our findings, together with likely the same reduced 2n = 98 karyotypes in the remainder Probarbini species, we hypothesize that the karyotype 2n = 98 might represent a derived character, shared by all members of the Probarbini clade. Besides, we also witnessed considerable changes in the amount and distribution of certain repetitive DNA classes, suggesting complex post-polyploidization processes in this small paleotetraploid tribe.


Current Genetic Medicine Reports | 2018

Conventional Cytogenetic Approaches—Useful and Indispensable Tools in Discovering Fish Biodiversity

Marcelo de Bello Cioffi; Orlando Moreira-Filho; Petr Ráb; Alexandr Sember; Wagner Franco Molina; Luiz Antonio Carlos Bertollo

Purpose of ReviewFishes exhibit the greatest biodiversity among extant vertebrates. In fact, about 34,000 fish species are currently estimated, of which ~ 25% are living in Neotropical freshwaters. Currently, several leading-edge studies using molecular biology procedures have largely contributed to the investigation of the fish genomic architecture at the chromosomal level. In this review, we intend to demonstrate that conventional cytogenetics is also a powerful procedure to identify and clarify both individual and inter- or intrapopulational fish characteristics and to unveil their biodiversity.Recent FindingsIntra- or interpopulational chromosomal characteristics, revealing dramatic processes of evolution and cryptic divergence and even speciation, as well as unusual cases of interspecific hybridization, clonal reproduction, and sex chromosome differentiation, were, and still are, unmistakably discovered among fishes by using conventional, i.e., non-molecular cytogenetic procedures.SummaryIn this review, we aim to demonstrate that conventional cytogenetics constitutes a powerful and indispensable tool in characterizing the hidden biodiversity of the ichthyofauna. We focus on some key examples that clearly illustrate the importance and the efficiency of this approach.

Collaboration


Dive into the Alexandr Sember's collaboration.

Top Co-Authors

Avatar

Petr Ráb

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcelo de Bello Cioffi

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

Jörg Bohlen

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Cassia Fernanda Yano

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

Ezequiel Aguiar de Oliveira

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terumi Hatanaka

Federal University of São Carlos

View shared research outputs
Top Co-Authors

Avatar

Marie Altmanová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Marie Rábová

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge