Alexandra Briquet
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra Briquet.
Cell Biology International | 2010
Mustapha Zeddou; Alexandra Briquet; Biserka Relic; Claire Josse; Michel Malaise; André Gothot; Chantal Lechanteur; Yves Beguin
Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbeccos modified Eagles medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM®] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+‐depleted MNC and CD133+‐ or LNGFR+‐enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non‐invasive and abundant source of MSC.
Haematologica | 2010
Alexandra Briquet; Sophie Dubois; Sandrine Bekaert; Marie Dolhet; Yves Beguin; André Gothot
Background Bone marrow mesenchymal stem cells support proliferation and differentiation of hematopoietic progenitor cells in vitro. Since these cells constitute a rare subset of bone marrow cells, mesenchymal stem cell preparations for clinical purposes require a preparative step of ex vivo multiplication. The aim of our study was to analyze the influence of culture duration on mesenchymal stem cell supportive activity. Design and Methods Mesenchymal stem cells were expanded for up to ten passages. These cells and CD34+ cells were seeded in cytokine-free co-cultures after which the phenotype, clonogenic capacity and in vivo repopulating activity of harvested hematopoietic cells were assessed. Results Early passage mesenchymal stem cells supported hematopoietic progenitor cell expansion and differentiation toward both B lymphoid and myeloid lineages. Late passage mesenchymal stem cells did not support hematopoietic progenitor cell and myeloid cell outgrowth but maintained B-cell supportive ability. In vitro maintenance of NOD/SCID mouse repopulating cells cultured for 1 week in contact with mesenchymal stem cells was effective until the fourth passage of the mesenchymal cells and declined thereafter. The levels of engraftment of CD34+ cells in NOD/SCID mice was higher when these cells were co-injected with early passage mesenchymal stem cells; however mesenchymal cells expanded beyond nine passages were ineffective in promoting CD34+ cell engraftment. Non-contact cultures indicated that mesenchymal stem cell supportive activity involved diffusible factors. Among these, interleukins 6 and 8 contributed to the supportive activity of early passage mesenchymal stem cells but not to those of late passage cells. The phenotype, as well as fat, bone and cartilage differentiation capacity, of mesenchymal stem cells did not change during their culture. Conclusions Extended culture of mesenchymal stem cells alters the ability of these cells to support hematopoietic progenitor cells without causing concomitant changes in their phenotype or differentiation capacity.
International Journal of Cancer | 2007
Guillaume Chatel; Corine Ganeff; Naima Boussif; Laurence Delacroix; Alexandra Briquet; Grégory Nolens; Rosita Winkler
The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro‐intestinal tract cancers. However, activation of the Hh pathway in colorectal cancers is controversial. We analyzed the expression of the main key members of the Hh pathway in 7 colon cancer cell lines in order to discover whether the pathway is constitutively active in these cells. We estimated the expression of SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP genes by RT‐PCR. Moreover, Hh ligand, Gli3 and Sufu protein levels were quantified by western blotting. None of the cell lines expressed the complete set of Hh pathway members. The ligands were absent from Colo320 and HCT116 cells, Smo from Colo205, HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor were GLI2/GLI3 in Colo205 or Caco‐2 cells. Furthermore the repressive form of Gli3, characteristic of an inactive pathway, was detected in SW480 and Colo320 cells. Finally treatment of colon cancer cells with cyclopamine, a specific inhibitor of the Hh pathway, did not downregulate PTCH and GLI1 genes expression in the colorectal cells, whereas it did so in PANC1 control cells. Taken together, these results indicate that the aberrant activation of the Hh signaling pathway is not common in colorectal cancer cell lines.
Stem Cells | 2008
Zakia Belaid-Choucair; Yves Lepelletier; Géraldine Poncin; Albert Thiry; Chantal Humblet; Mustapha Maachi; Aurore Beaulieu; Elke Schneider; Alexandra Briquet; Pierre Mineur; Charles Lambert; Daniella Mendes-da-Cruz; Marie Louise Ahui; Vahid Asnafi; Michel Dy; Jacques Boniver; Betty Nusgens; Olivier Hermine; Marie Paule Defresne
Adipocytes are part of hematopoietic microenvironment, even though up to now in humans, their role in hematopoiesis is still questioned. We have previously shown that accumulation of fat cells in femoral bone marrow (BM) coincides with increased expression of neuropilin‐1 (NP‐1), while it is weakly expressed in hematopoietic iliac crest BM. Starting from this observation, we postulated that adipocytes might exert a negative effect on hematopoiesis mediated through NP‐1. To test this hypothesis, we set up BM adipocytes differentiated into fibroblast‐like fat cells (FLFC), which share the major characteristics of primitive unilocular fat cells, as an experimental model. As expected, FLFCs constitutively produced macrophage colony stimulating factor and induced CD34+ differentiation into macrophages independently of cell‐to‐cell contact. By contrast, granulopoiesis was hampered by cell‐to‐cell contact but could be restored in transwell culture conditions, together with granulocyte colony stimulating factor production. Both functions were also recovered when FLFCs cultured in contact with CD34+ cells were treated with an antibody neutralizing NP‐1, which proved its critical implication in contact inhibition. An inflammatory cytokine such as interleukin‐1 β or dexamethasone modulates FLFC properties to restore granulopoiesis. Our data provide the first evidence that primary adipocytes exert regulatory functions during hematopoiesis that might be implicated in some pathological processes.
Clinical & Developmental Immunology | 2015
Pascal Rowart; Pauline Erpicum; Olivier Detry; Laurent Weekers; Céline Gregoire; Chantal Lechanteur; Alexandra Briquet; Yves Beguin; Jean-Marie Krzesinski; François Jouret
Ischemia/reperfusion injury (IRI) represents a worldwide public health issue of increasing incidence. IRI may virtually affect all organs and tissues and is associated with significant morbidity and mortality. Particularly, the duration of blood supply deprivation has been recognized as a critical factor in stroke, hemorrhagic shock, or myocardial infarction, as well as in solid organ transplantation (SOT). Pathophysiologically, IRI causes multiple cellular and tissular metabolic and architectural changes. Furthermore, the reperfusion of ischemic tissues induces both local and systemic inflammation. In the particular field of SOT, IRI is an unavoidable event, which conditions both short- and long-term outcomes of graft function and survival. Clinically, the treatment of patients with IRI mostly relies on supportive maneuvers since no specific target-oriented therapy has been validated thus far. In the present review, we summarize the current literature on mesenchymal stromal cells (MSC) and their potential use as cell therapy in IRI. MSC have demonstrated immunomodulatory, anti-inflammatory, and tissue repair properties in rodent studies and in preliminary clinical trials, which may open novel avenues in the management of IRI and SOT.
Nephrology Dialysis Transplantation | 2014
Pauline Erpicum; Olivier Detry; Laurent Weekers; Catherine Bonvoisin; Chantal Lechanteur; Alexandra Briquet; Yves Beguin; Jean-Marie Krzesinski; François Jouret
Acute kidney injury (AKI) represents a worldwide public health issue of increasing incidence, with a significant morbi-mortality. AKI treatment mostly relies on supportive manoeuvres in the absence of specific target-oriented therapy. The pathophysiology of AKI commonly involves ischaemia/reperfusion (I/R) events, which cause both immune and metabolic consequences in renal tissue. Similarly, at the time of kidney transplantation (KT), I/R is an unavoidable event which contributes to early graft dysfunction and enhanced graft immunogenicity. Mesenchymal stromal cells (MSCs) represent a heterogeneous population of adult, fibroblast-like multi-potent cells characterized by their ability to differentiate into tissues of mesodermal lineages. Because MSC have demonstrated immunomodulatory, anti-inflammatory and tissue repair properties, MSC administration at the time of I/R and/or at later times has been hypothesized to attenuate AKI severity and to accelerate the regeneration process. Furthermore, MSC in KT could help prevent both I/R injury and acute rejection, thereby increasing graft function and survival. In this review, summarizing the encouraging observations in animal models and in pilot clinical trials, we outline the benefit of MSC therapy in AKI and KT, and envisage their putative role in renal ischaemic conditioning.
Alimentary Pharmacology & Therapeutics | 2017
Céline Gregoire; Chantal Lechanteur; Alexandra Briquet; Etienne Baudoux; Frédéric Baron; Edouard Louis; Yves Beguin
Inflammatory bowel diseases (IBD) are chronic relapsing diseases in which pro‐inflammatory immune cells and cytokines induce intestinal tissue damage and disability. Mesenchymal stromal cells (MSCs) exert powerful immunomodulatory effects and stimulate tissue repair.
Journal of Hepatology | 2017
Olivier Detry; Morgan Vandermeulen; Marie-Hélène Delbouille; Joan Somja; Noëlla Bletard; Alexandra Briquet; Chantal Lechanteur; Olivier Giet; Etienne Baudoux; Muriel Hannon; Frédéric Baron; Yves Beguin
BACKGROUND & AIMS Mesenchymal stromal cell (MSC) infusion could be a means to establish tolerance in solid organ recipients. The aim of this prospective, controlled, phase I study was to evaluate the feasibility, safety and tolerability of a single infusion of MSCs in liver transplant recipients. METHODS Ten liver transplant recipients under standard immunosuppression received 1.5-3×106/kg third-party unrelated MSCs on postoperative day 3±2, and were prospectively compared to a control group of ten liver transplant recipients. As primary endpoints, MSC infusion toxicity was evaluated, and infectious and cancerous complications were prospectively recorded until month 12 in both groups. As secondary endpoints, rejection rate, month-6 graft biopsies, and peripheral blood lymphocyte phenotyping were compared. Progressive immunosuppression weaning was attempted from month 6 to 12 in MSC recipients. RESULTS No variation in vital parameters or cytokine release syndrome could be detected during and after MSC infusion. No patient developed impairment of organ functions (including liver graft function) following MSC infusion. No increased rate of opportunistic infection or de novo cancer was detected. As secondary endpoints, there was no difference in overall rates of rejection or graft survival. Month-6 biopsies did not demonstrate a difference between groups in the evaluation of rejection according to the Banff criteria, in the fibrosis score or in immunohistochemistry (including Tregs). No difference in peripheral blood lymphocyte typing could be detected. The immunosuppression weaning in MSC recipients was not successful. CONCLUSIONS No side effect of MSC infusion at day 3 after liver transplant could be detected, but this infusion did not promote tolerance. This study opens the way for further MSC or Treg-based trials in liver transplant recipients. LAY SUMMARY Therapy with mesenchymal stromal cells (MSCs) has been proposed as a means to improve results of solid organ transplantation. One of the potential MSC role could be to induce tolerance after liver transplantation, i.e. allowing the cessation of several medications with severe side effects. This study is the first-in-man use of MSC therapy in ten liver transplant recipients. This study did not show toxicity after a single MSC infusion but it was not sufficient to allow withdrawal of immunosuppression. CLINICAL TRIAL REGISTRATION NUMBER Eudract: # 2011-001822-81, ClinicalTrials.gov: # NCT 01429038.
PLOS ONE | 2014
Marilène Binsfeld; Yves Beguin; Ludovic Belle; Eléonore Otjacques; Muriel Hannon; Alexandra Briquet; Roy Heusschen; Pierre Drion; Jenny Zilberberg; Bjarne Bogen; Frédéric Baron; Jo Caers
Background Multiple myeloma (MM) is a malignant plasma cell disorder with poor long-term survival and high recurrence rates. Despite evidence of graft-versus-myeloma (GvM) effects, the use of allogeneic hematopoietic stem cell transplantation (allo-SCT) remains controversial in MM. In the current study, we investigated the anti-myeloma effects of allo-SCT from B10.D2 mice into MHC-matched myeloma-bearing Balb/cJ mice, with concomitant development of chronic graft-versus-host disease (GvHD). Methods and results Balb/cJ mice were injected intravenously with luciferase-transfected MOPC315.BM cells, and received an allogeneic (B10.D2 donor) or autologous (Balb/cJ donor) transplant 30 days later. We observed a GvM effect in 94% of the allogeneic transplanted mice, as the luciferase signal completely disappeared after transplantation, whereas all the autologous transplanted mice showed myeloma progression. Lower serum paraprotein levels and lower myeloma infiltration in bone marrow and spleen in the allogeneic setting confirmed the observed GvM effect. In addition, the treated mice also displayed chronic GvHD symptoms. In vivo and in vitro data suggested the involvement of effector memory CD4 and CD8 T cells associated with the GvM response. The essential role of CD8 T cells was demonstrated in vivo where CD8 T-cell depletion of the graft resulted in reduced GvM effects. Finally, TCR Vβ spectratyping analysis identified Vβ families within CD4 and CD8 T cells, which were associated with both GvM effects and GvHD, whereas other Vβ families within CD4 T cells were associated exclusively with either GvM or GvHD responses. Conclusions We successfully established an immunocompetent murine model of graft-versus-myeloma. This is the first murine GvM model using immunocompetent mice that develop MM which closely resembles human MM disease and that are treated after disease establishment with an allo-SCT. Importantly, using TCR Vβ spectratyping, we also demonstrated the presence of GvM unique responses potentially associated with the curative capacity of this immunotherapeutic approach.
PLOS ONE | 2012
Ludovic Belle; Jacques Foguenne; André Gothot; Yves Beguin; Frédéric Baron; Alexandra Briquet
Background The availability of tyrosine kinase inhibitors (TKIs) has considerably changed the management of Philadelphia chromosome positive leukemia. The BCR-ABL inhibitor imatinib is also known to inhibit the tyrosine kinase of the stem cell factor receptor, c-Kit. Nilotinib is 30 times more potent than imatinib towards BCR-ABL in vitro. Studies in healthy volunteers and patients with chronic myelogenous leukemia or gastrointestinal stromal tumors have shown that therapeutic doses of nilotinib deliver drug levels similar to those of imatinib. The aim of this study was to compare the inhibitory effects of imatinib and nilotinib on proliferation, differentiation, adhesion, migration and engraftment capacities of human cord blood CD34+ cells. Design and Methods After a 48-hour cell culture with or without TKIs, CFC, LTC-IC, migration, adhesion and cell cycle analysis were performed. In a second time, the impact of these TKIs on engraftment was assessed in a xenotransplantation model using NOD/SCID/IL-2Rγ (null) mice. Results TKIs did not affect LTC-IC frequencies despite in vitro inhibition of CFC formation due to inhibition of CD34+ cell cycle entry. Adhesion of CD34+ cells to retronectin was reduced in the presence of either imatinib or nilotinib but only at high concentrations. Migration through a SDF-1α gradient was not changed by cell culture in the presence of TKIs. Finally, bone marrow cellularity and human chimerism were not affected by daily doses of imatinib and nilotinib in a xenogenic transplantation model. No significant difference was seen between TKIs given the equivalent affinity of imatinib and nilotinib for KIT. Conclusions These data suggest that combining non-myeloablative conditioning regimen with TKIs starting the day of the transplantation could be safe.