Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chantal Lechanteur is active.

Publication


Featured researches published by Chantal Lechanteur.


Biology of Blood and Marrow Transplantation | 2010

Cotransplantation of Mesenchymal Stem Cells Might Prevent Death from Graft-versus-Host Disease (GVHD) without Abrogating Graft-versus-Tumor Effects after HLA-Mismatched Allogeneic Transplantation following Nonmyeloablative Conditioning

Frédéric Baron; Chantal Lechanteur; Evelyne Willems; Etienne Baudoux; Laurence Seidel; Jean-François Vanbellinghen; Kaoutar Hafraoui; Marie Lejeune; André Gothot; Georges Fillet; Yves Beguin

Recent studies have suggested that coinfusion of mesenchymal stem cells (MSCs) the day of hematopoietic cell transplantation (HCT) might promote engraftment and prevent graft-versus-host disease (GVHD) after myeloablative allogeneic HCT. This prompted us to investigate in a pilot study whether MSC infusion before HCT could allow nonmyeloablative (NMA) HCT (a transplant strategy based nearly exclusively on graft-versus-tumor effects for tumor eradication) from HLA-mismatched donors to be performed safely. Twenty patients with hematologic malignancies were given MSCs from third party unrelated donors 30-120 minutes before peripheral blood stem cells (PBSCs) from HLA-mismatched unrelated donors, after conditioning with 2 Gy total body irradiation (TBI) and fludarabine. The primary endpoint was safety, defined as a 100-day incidence of nonrelapse mortality (NRM) <35%. One patient had primary graft rejection, whereas the remaining 19 patients had sustained engraftment. The 100-day cumulative incidence of grade II-IV acute GVHD (aGVHD) was 35%, whereas 65% of the patients experienced moderate/severe chronic GVHD (cGVHD). One-year NRM (10%), relapse (30%), overall survival (OS) (80%) and progression-free survival (PFS) (60%), and 1-year incidence of death from GVHD or infection with GVHD (10%) were encouraging. These figures compare favorably with those observed in a historic group of 16 patients given HLA-mismatched PBSCs (but no MSCs) after NMA conditioning, which had a 1-year incidence of NRM of 37% (P = .02), a 1-year incidence of relapse of 25% (NS), a 1-year OS and PFS of 44% (P = .02), and 38% (P = .1), respectively, and a 1-year rate of death from GVHD or infection with GVHD of 31% (P = .04). In conclusion, our data suggest that HLA-mismatched NMA HCT with MSC coinfusion appeared to be safe.


Cell Biology International | 2010

The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood

Mustapha Zeddou; Alexandra Briquet; Biserka Relic; Claire Josse; Michel Malaise; André Gothot; Chantal Lechanteur; Yves Beguin

Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbeccos modified Eagles medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM®] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+‐depleted MNC and CD133+‐ or LNGFR+‐enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non‐invasive and abundant source of MSC.


Clinical & Developmental Immunology | 2015

Mesenchymal Stromal Cell Therapy in Ischemia/Reperfusion Injury.

Pascal Rowart; Pauline Erpicum; Olivier Detry; Laurent Weekers; Céline Gregoire; Chantal Lechanteur; Alexandra Briquet; Yves Beguin; Jean-Marie Krzesinski; François Jouret

Ischemia/reperfusion injury (IRI) represents a worldwide public health issue of increasing incidence. IRI may virtually affect all organs and tissues and is associated with significant morbidity and mortality. Particularly, the duration of blood supply deprivation has been recognized as a critical factor in stroke, hemorrhagic shock, or myocardial infarction, as well as in solid organ transplantation (SOT). Pathophysiologically, IRI causes multiple cellular and tissular metabolic and architectural changes. Furthermore, the reperfusion of ischemic tissues induces both local and systemic inflammation. In the particular field of SOT, IRI is an unavoidable event, which conditions both short- and long-term outcomes of graft function and survival. Clinically, the treatment of patients with IRI mostly relies on supportive maneuvers since no specific target-oriented therapy has been validated thus far. In the present review, we summarize the current literature on mesenchymal stromal cells (MSC) and their potential use as cell therapy in IRI. MSC have demonstrated immunomodulatory, anti-inflammatory, and tissue repair properties in rodent studies and in preliminary clinical trials, which may open novel avenues in the management of IRI and SOT.


Transfusion | 2013

Infusion of clinical-grade enriched regulatory T cells delays experimental xenogeneic graft-versus-host disease.

Muriel Hannon; Chantal Lechanteur; Sophie Lucas; Joan Somja; Laurence Seidel; Ludovic Belle; Etienne Baudoux; Olivier Giet; André-Marie Chantillon; Philippe Delvenne; Pierre Drion; Yves Beguin; Stéphanie Humblet-Baron; Frédéric Baron

We investigated the ability of clinical‐grade enriched human regulatory T cells (Treg) to attenuate experimental xenogeneic graft‐versus‐host disease (GVHD) induced by peripheral blood mononuclear cells (PBMNCs; autologous to Treg) infusion in NSG mice, as well as verified their inability to induce xenogeneic GVHD when infused alone.


Nephrology Dialysis Transplantation | 2014

Mesenchymal stromal cell therapy in conditions of renal ischaemia/reperfusion

Pauline Erpicum; Olivier Detry; Laurent Weekers; Catherine Bonvoisin; Chantal Lechanteur; Alexandra Briquet; Yves Beguin; Jean-Marie Krzesinski; François Jouret

Acute kidney injury (AKI) represents a worldwide public health issue of increasing incidence, with a significant morbi-mortality. AKI treatment mostly relies on supportive manoeuvres in the absence of specific target-oriented therapy. The pathophysiology of AKI commonly involves ischaemia/reperfusion (I/R) events, which cause both immune and metabolic consequences in renal tissue. Similarly, at the time of kidney transplantation (KT), I/R is an unavoidable event which contributes to early graft dysfunction and enhanced graft immunogenicity. Mesenchymal stromal cells (MSCs) represent a heterogeneous population of adult, fibroblast-like multi-potent cells characterized by their ability to differentiate into tissues of mesodermal lineages. Because MSC have demonstrated immunomodulatory, anti-inflammatory and tissue repair properties, MSC administration at the time of I/R and/or at later times has been hypothesized to attenuate AKI severity and to accelerate the regeneration process. Furthermore, MSC in KT could help prevent both I/R injury and acute rejection, thereby increasing graft function and survival. In this review, summarizing the encouraging observations in animal models and in pilot clinical trials, we outline the benefit of MSC therapy in AKI and KT, and envisage their putative role in renal ischaemic conditioning.


Cancer Gene Therapy | 2000

Cytosine deaminase suicide gene therapy for peritoneal carcinomatosis.

Mohamed Bentires-Alj; Anne-Cécile Hellin; Chantal Lechanteur; Frédéric Princen; Miguel Lopez Y Cadenas; Georges Fillet; Jean-Louis Gielen; Marie-Paule Merville; Vincent Bours

Gene therapy is a novel therapeutic approach that might soon improve the prognosis of some cancers. We investigated the feasibility of cytosine deaminase (CD) suicide gene therapy in a model of peritoneal carcinomatosis. DHD/K12 colorectal adenocarcinoma cells transfected in vitro with the CD gene were highly sensitive to 5-fluorocytosine (5-FC), and a bystander effect could also be observed. Treating CD+ cells with 5-FC resulted in apoptosis as detected by terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling. In vitro, several human cell lines derived from ovarian or colorectal carcinomas, as well as the rat glioblastoma 9 L cell line, responded to CD/5-FC and showed a very strong bystander effect. 5-FC treatment of peritoneal carcinomatosis generated in syngeneic BDIX rats by CD-expressing DHD/K12 cells led to a complete and prolonged response and to prolonged survival. Our study thus demonstrated the efficacy of CD suicide gene therapy for the treatment of peritoneal carcinomatosis.


Gene Therapy | 1997

HSV-1 thymidine kinase gene therapy for colorectal adenocarcinoma-derived peritoneal carcinomatosis.

Chantal Lechanteur; Frédéric Princen; S. Lo Bue; Bernard Detroz; Georges Fillet; Jean-Louis Gielen; Vincent Bours; Marie-Paule Merville

Peritoneal carcinomatosis is a common clinical situation which, in most cases, cannot be eradicated by surgery or chemotherapy. The feasibility of an HSV-TK-based suicide gene therapy for peritoneal carcinomatosis induced by DHD/K12 colon carcinoma cells was investigated. DHD/K12 cells stably expressing the tk gene were killed in vitro in the presence of low concentrations of ganciclovir; they exhibited a ‘bystander effect’ when mixed with TK-negative cells. BD-IX rats injected intraperitoneally, either directly or after surgical peritoneal irritations, with DHD/K12 cells developed peritoneal carcinomatosis within 2 weeks. Ganciclovir treatment of animals injected with DHD/K12-TK cells allowed a significant reduction of the tumor volume as well as a prolonged survival. Of these animals 35–40% showed a long-term disease-free survival after ganciclovir therapy. Residual or relapsing tumors could be explained by a low expression of the transgene as demonstrated by RT-PCR.


Transplantation | 2014

Impact of Cotransplantation of Mesenchymal Stem Cells on Lung Function After Unrelated Allogeneic Hematopoietic Stem Cell Transplantation Following Non-Myeloablative Conditioning

Catherine Moermans; Chantal Lechanteur; Etienne Baudoux; Olivier Giet; Monique Henket; Laurence Seidel; Marie Lejeune; Evelyne Willems; Frédéric Baron; Renaud Louis; Yves Beguin

Background In the context of hematopoietic stem cell transplantation (HSCT), mesenchymal stem cells (MSC) have been used to promote engraftment and prevent graft-versus-host disease. However, in animal models, MSC were shown to cause pulmonary alterations after systemic administration. The impact of MSC infusion on lung function has not been studied in humans. The objective of the study was to investigate the impact of MSC co-infusion on lung function and airway inflammation as well as on the incidence of pulmonary infections and cytomegalovirus (CMV) reactivation after HSCT. Methods We have prospectively followed 30 patients who underwent unrelated HSCT with MSC co-infusion after non-myeloablative conditioning (NMA). Each patient underwent detailed lung function testing (FEV1, FVC, FEV1/FVC, RV, TLC, DLCO, and KCO) and measurement of exhaled nitric oxide before HSCT and 3, 6, and 12 months posttransplant. The incidence of pulmonary infections and CMV reactivation were also monitored. This group was compared with another group of 28 patients who underwent the same type of transplantation but without MSC co-infusion. Results Lung function tests did not show important modifications over time and did not differ between the MSC and control groups. There was a higher 1-year incidence of infection, particularly of fungal infections, in patients having received a MSC co-infusion. There was no difference between groups regarding the 1-year incidence of CMV reactivation. Conclusions MSC co-infusion does not induce pulmonary deterioration 1 year after HSCT with NMA conditioning. MSC appear to be safe for the lung, but close monitoring of pulmonary infections remains essential.


Cancer Gene Therapy | 2000

Antitumoral vaccination with granulocyte-macrophage colony-stimulating factor or interleukin-12-expressing DHD/K12 colon adenocarcinoma cells.

Chantal Lechanteur; Michel Moutschen; Frédéric Princen; M. Lopez; Elizabeth Franzen; Jacques Gielen; Vincent Bours; Marie-Paule Merville

Immunomodulating gene therapy for the treatment of malignant diseases is under extensive investigation. In this study, we induced an antitumoral immune response with murine interleukin-12 (mIL-12) and murine granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor cells in a model of peritoneal carcinomatosis. Intraperitoneal injection of DHD/K12 tumoral cells engineered to produce IL-12 or GM-CSF did not generate any tumors, whereas untransduced DHD/K12 cells gave rise to peritoneal carcinomatosis. IL-12-expressing DHD/K12 cells also protected against tumors derived from coinjected parental cells. To test whether cytokine-producing cells could elicit a memory antitumoral immune response, animals received a challenge with parental DHD/K12 cells 35 days after the injection of proliferating or irradiated DHD/K12 engineered cells. Under our experimental conditions, irradiated tumor cells did not generate any antitumoral immunity. In contrast, tumor development was delayed and survival increased in the animals vaccinated with cytokine-secreting proliferating cells. A specific cytotoxic T-lymphocyte response against DHD/K12 parental cells was observed after vaccination with GM-CSF-expressing cells. Our results demonstrated that intraperitoneal vaccination with IL-12- or GM-CSF-expressing adenocarcinoma cells induced a systemic immune antitumoral response that may be useful as an adjuvant therapy after surgical resection of colorectal cancer.


Alimentary Pharmacology & Therapeutics | 2017

Review article: mesenchymal stromal cell therapy for inflammatory bowel diseases.

Céline Gregoire; Chantal Lechanteur; Alexandra Briquet; Etienne Baudoux; Frédéric Baron; Edouard Louis; Yves Beguin

Inflammatory bowel diseases (IBD) are chronic relapsing diseases in which pro‐inflammatory immune cells and cytokines induce intestinal tissue damage and disability. Mesenchymal stromal cells (MSCs) exert powerful immunomodulatory effects and stimulate tissue repair.

Collaboration


Dive into the Chantal Lechanteur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge