Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra C. Miller is active.

Publication


Featured researches published by Alexandra C. Miller.


Environmental Health Perspectives | 2005

Embedded Weapons-Grade Tungsten Alloy Shrapnel Rapidly Induces Metastatic High-Grade Rhabdomyosarcomas in F344 Rats

John F. Kalinich; Christy A. Emond; Thomas K. Dalton; Steven R. Mog; Gary D. Coleman; Jessica E. Kordell; Alexandra C. Miller; David E. McClain

Continuing concern regarding the potential health and environmental effects of depleted uranium and lead has resulted in many countries adding tungsten alloy (WA)-based munitions to their battlefield arsenals as replacements for these metals. Because the alloys used in many munitions are relatively recent additions to the list of militarily relevant metals, very little is known about the health effects of these metals after internalization as embedded shrapnel. Previous work in this laboratory developed a rodent model system that mimicked shrapnel loads seen in wounded personnel from the 1991 Persian Gulf War. In the present study, we used that system and male F344 rats, implanted intramuscularly with pellets (1 mm × 2 mm cylinders) of weapons-grade WA, to simulate shrapnel wounds. Rats were implanted with 4 (low dose) or 20 pellets (high dose) of WA. Tantalum (20 pellets) and nickel (20 pellets) served as negative and positive controls, respectively. The high-dose WA-implanted rats (n = 46) developed extremely aggressive tumors surrounding the pellets within 4–5 months after implantation. The low-dose WA-implanted rats (n = 46) and nickel-implanted rats (n = 36) also developed tumors surrounding the pellets but at a slower rate. Rats implanted with tantalum (n = 46), an inert control metal, did not develop tumors. Tumor yield was 100% in both the low- and high-dose WA groups. The tumors, characterized as high-grade pleomorphic rhabdomyosarcomas by histopathology and immunohistochemical examination, rapidly metastasized to the lung and necessitated euthanasia of the animal. Significant hematologic changes, indicative of polycythemia, were also observed in the high-dose WA-implanted rats. These changes were apparent as early as 1 month postimplantation in the high-dose WA rats, well before any overt signs of tumor development. These results point out the need for further studies investigating the health effects of tungsten and tungsten-based alloys.


Journal of Inorganic Biochemistry | 2002

Depleted uranium-catalyzed oxidative DNA damage: absence of significant alpha particle decay

Alexandra C. Miller; Michael Stewart; Kia Brooks; Lin Shi; Natalie Page

Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalized human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. DU possesses both a radiological (alpha particle) and a chemical (metal) component. Since DU has a low-specific activity in comparison to natural uranium, it is not considered to be a significant radiological hazard. In the current study we demonstrate that DU can generate oxidative DNA damage and can also catalyze reactions that induce hydroxyl radicals in the absence of significant alpha particle decay. Experiments were conducted under conditions in which chemical generation of hydroxyl radicals was calculated to exceed the radiolytic generation by one million-fold. The data showed that markers of oxidative DNA base damage, thymine glycol and 8-deoxyguanosine could be induced from DU-catalyzed reactions of hydrogen peroxide and ascorbate similarly to those occurring in the presence of iron catalysts. DU was 6-fold more efficient than iron at catalyzing the oxidation of ascorbate at pH 7. These data not only demonstrate that DU at pH 7 can induced oxidative DNA damage in the absence of significant alpha particle decay, but also suggest that DU can induce carcinogenic lesions, e.g. oxidative DNA lesions, through interaction with a cellular oxygen species.


Journal of Environmental Radioactivity | 2003

Genomic instability in human osteoblast cells after exposure to depleted uranium: delayed lethality and micronuclei formation

Alexandra C. Miller; Kia Brooks; Michael Stewart; Blake Anderson; Lin Shi; David E. McClain; Natalie Page

It is known that radiation can induce a transmissible persistent destabilization of the genome. We have established an in vitro cellular model using HOS cells to investigate whether genomic instability plays a role in depleted uranium (DU)-induced effects. Transmissible genomic instability, manifested in the progeny of cells exposed to ionizing radiation, has been characterized by de novo chromosomal aberrations, gene mutations, and an enhanced death rate. Cell lethality and micronuclei formation were measured at various times after exposure to DU, Ni, or gamma radiation. Following a prompt, concentration-dependent acute response for both endpoints, there was de novo genomic instability in progeny cells. Delayed reproductive death was observed for many generations (36 days, 30 population doublings) following exposure to DU, Ni, or gamma radiation. While DU stimulated delayed production of micronuclei up to 36 days after exposure, levels in cells exposed to gamma-radiation or Ni returned to normal after 12 days. There was also a persistent increase in micronuclei in all clones isolated from cells that had been exposed to nontoxic concentrations of DU. While clones isolated from gamma-irradiated cells (at doses equitoxic to metal exposure) generally demonstrated an increase in micronuclei, most clonal progeny of Ni-exposed cells did not. These studies demonstrate that DU exposure in vitro results in genomic instability manifested as delayed reproductive death and micronuclei formation.


Molecular and Cellular Biochemistry | 2004

Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2)

Alexandra C. Miller; Kia Brooks; Jan Smith; Natalie Page

Depleted uranium (DU) and heavy-metal tungsten alloys (HMTAs) are dense heavy-metals used primarily in military applications. Chemically similar to natural uranium, but depleted of the higher activity 235U and 234U isotopes, DU is a low specific activity, high-density heavy metal. In contrast, the non-radioactive HMTAs are composed of a mixture of tungsten (91–93%), nickel (3–5%), and cobalt (2–4%) particles. The use of DU and HMTAs in military munitions could result in their internalization in humans. Limited data exist however, regarding the long-term health effects of internalized DU and HMTAs in humans. Both DU and HMTAs possess a tumorigenic transforming potential and are genotoxic and mutagenic in vitro. Using insoluble DU-UO2 and a reconstituted mixture of tungsten, nickel, cobalt (rWNiCo), we tested their ability to induce stress genes in thirteen different recombinant cell lines generated from human liver carcinoma cells (HepG2). The commercially available CAT-Tox (L) cellular assay consists of a panel of cell lines stably transfected with reporter genes consisting of a coding sequence for chloramphenicol acetyl transferase (CAT) under transcriptional control by mammalian stress gene regulatory sequences. DU, (5–50 μg/ml) produced a complex profile of activity demonstrating significant dose-dependent induction of the hMTIIA FOS, p53RE, Gadd153, Gadd45, NFκBRE, CRE, HSP70, RARE, and GRP78 promoters. The rWNiCo mixture (5–50 μg/ml) showed dose-related induction of the GSTYA, hMTIIA, p53RE, FOS, NFκBRE, HSP70, and CRE promoters. An examination of the pure metals, tungsten (W), nickel (Ni), and cobalt (Co), comprising the rWNiCo mixture, demonstrated that each metal exhibited a similar pattern of gene induction, but at a significantly decreased magnitude than that of the rWNiCo mixture. These data showed a synergistic activation of gene expression by the metals in the rWNiCo mixture. Our data show for the first time that DU and rWNiCo can activate gene expression through several signal transduction pathways that may be involved in the toxicity and tumorigenicity of both DU and HMTAs.


Radiation Research | 1991

Increased radiation resistance in transformed and nontransformed cells with elevated ras proto-oncogene expression

Dvorit Samid; Alexandra C. Miller; Donata Rimoldi; Jeffrey Gafner; Edward P. Clark

The cellular Ha-ras oncogene, activated by missense mutations, has been implicated in intrinsic resistance to ionizing radiation. This study shows that the overexpression of the unmutated gene (proto-oncogene) may also be involved in how the cells respond to radiation. The experimental system consisted of mouse NIH 3T3-derived cell lines which carry multiple copies of a transcriptionally activated human c-Ha-ras proto-oncogene. Both tumorigenic (RS485) and revertant nontumorigenic subclones (PR4 and 4C3) which have high levels of ras expression exhibited a marked increase in radioresistance as measured by D0 compared to control NIH 3T3 cells. Other nontransformed cells with elevated levels of ras (phenotypically revertant line 4C8-A10) also had a significantly increased resistance to radiation, further indicating an association between ras and radioresistance. The increased radioresistance of the RS485 and phenotypic revertants could not be explained by a differential expression of the myc or metallothionein I genes or by variations in cell cycle. The correlation between increased ras proto-oncogene expression and radioresistance suggests that the ras encoded p21, a plasma membrane protein, may participate in the cellular responses to ionizing radiation.


Science of The Total Environment | 2001

Biological effects of embedded depleted uranium (DU): summary of Armed Forces Radiobiology Research Institute research

David E. McClain; Kimberly Benson; T.K Dalton; J Ejnik; Christy A. Emond; Shelly J. Hodge; John F. Kalinich; M.A Landauer; Alexandra C. Miller; Terry C. Pellmar; Michael Stewart; Vilmar Villa; Jiaquan Xu

The Persian Gulf War resulted in injuries of US Coalition personnel by fragments of depleted uranium (DU). Fragments not immediately threatening the health of the individuals were allowed to remain in place, based on long-standing treatment protocols designed for other kinds of metal shrapnel injuries. However, questions were soon raised as to whether this approach is appropriate for a metal with the unique radiological and toxicological properties of DU. The Armed Forces Radiobiology Research Institute (AFRRI) is investigating health effects of embedded fragments of DU to determine whether current surgical fragment removal policies remain appropriate for this metal. These studies employ rodents implanted with DU pellets as well as cultured human cells exposed to DU compounds. Results indicate uranium from implanted DU fragments distributed to tissues far-removed from implantation sites, including bone, kidney, muscle, and liver. Despite levels of uranium in the kidney that were nephrotoxic after acute exposure, no histological or functional kidney toxicity was observed. However, results suggest the need for further studies of long-term health impact, since DU was found to be mutagenic, and it transformed human osteoblast cells to a tumorigenic phenotype. It also altered neurophysiological parameters in rat hippocampus, crossed the placental barrier, and entered fetal tissue. This report summarizes AFRRIs depleted uranium research to date.


Advances in Space Research | 2003

Radiation biodosimetry: applications for spaceflight.

William F. Blakely; Alexandra C. Miller; Marcy B. Grace; C.B McLeland; L Luo; J.M Muderhwa; V.L Miner; Pataje G. S. Prasanna

The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted personnel dosimeters and cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a portable hematology analyzer, molecular biodosimetry using nucleic acid and antigen-based diagnostic equipment, and a dose assessment management software application. A dry-capillary tube reagent-based centrifuge blood cell counter (QBC Autoread Plus, Becton [correction of Beckon] Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins) can be measured in real time using such diagnostic detection technologies as miniaturized nucleic acid sequences and antigen-based biosensors, but they require validation of dose-dependent targets and development of optimized protocols and analysis systems. The Biodosimetry Assessment Tool, a software application, calculates radiation dose based on a patients physical signs and symptoms and blood cell count analysis. It also annotates location of personnel dosimeters, displays a summary of a patients dosimetric information to healthcare professionals, and archives the data for further use. These radiation assessment diagnostic technologies can have dual-use applications supporting general medical-related care.


Reviews on environmental health | 2007

A Review of Depleted Uranium Biological Effects: In Vitro and In Vivo Studies

Alexandra C. Miller; David E. McClain

The use of depleted uranium in armor-penetrating munitions remains a source of controversy because of the numerous unanswered questions about its long-term health effects. Although no conclusive epidemiologic data have correlated DU exposure to specific health effects, studies using cultured cells and laboratory rodents continue to suggest the possibility of leukemogenic, genetic, reproductive, and neurological effects from chronic exposure. Until issues of concern are resolved with further research, the use of depleted uranium by the military will continue to be controversial.


Molecular and Cellular Biochemistry | 2005

Leukemic transformation of hematopoietic cells in mice internally exposed to depleted uranium

Alexandra C. Miller; Catherine Bonait-Pellie; Robert F. Merlot; John Michel; Michael Stewart; Paul Lison

Depleted uranium (DU) is a dense heavy metal used in military applications. During military conflicts, US military personnel have been wounded by DU shrapnel. The health effects of embedded DU are unknown. Published data from our laboratory demonstrated that DU exposure in vitro can transform immortalized human osteoblast cells (HOS) to the tumorigenic phenotype. Results from our laboratory have also shown that DU is genotoxic and mutagenic in cultured human cells. Internalized DU could be a carcinogenic risk and concurrent alpha particle and heavy metal toxic effects complicate this potential risk. Anecdotal reports have suggested that DU can cause leukemia. To better assess this risk, we have developed an in vivo leukemogenesis model. This model involves using murine hematopoietic cells (FDC-P1) that are dependent on stimulation by granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) and injected into mice to produce myeloid leukemia. Although immortalized, these cells are not tumorigenic on subcutaneous inoculation in mice. Intravenous injection of FDC-P1 cells into DU-implanted DBA/2 mice was followed by the development of leukemias in 76% of all mice implanted with DU pellets. In contrast, only 12% of control mice developed leukemia. Karyotypic analysis confirmed that the leukemias originated from FDC-P1 cells. The growth properties of leukemic cells from bone marrow, spleen, and lymph node were assessed and indicate that the FDC-P1 cells had become transformed in vivo. The kidney, spleen, bone marrow, muscle, and urine showed significant elevations in tissue uranium levels prior to induction of leukemia. These results demonstrated that a DU altered in vivo environment may be involved in the pathogenesis of DU induced leukemia in an animal model.


Biochimie | 2009

DNA methylation during depleted uranium-induced leukemia.

Alexandra C. Miller; Michael Stewart; Rafael Rivas

OBJECTIVES The radioactive heavy metal depleted uranium (DU) is used in kinetic-energy penetrators in military applications. The objective of this study was to determine involvement of DNA methylation in DU-induced leukemia. METHODS Methylation was measured by direct analysis of 5-methylcytosine content of spleen DNA in DU leukemic mice. RESULTS Spleen hypomethylation occurred during DU-induced leukemogenesis (chronic internal DU exposure). Aberrant gene transcription was also detected. CONCLUSIONS Epigenetic mechanisms are implicated in DU-induced leukemia. These data are evidence of aberrant DNA hypomethylation being associated with DU leukemogenesis.

Collaboration


Dive into the Alexandra C. Miller's collaboration.

Top Co-Authors

Avatar

Dvorit Samid

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Michael Stewart

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

David E. McClain

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jiaquan Xu

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rafael Rivas

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Edward P. Clark

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Natalie Page

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

John F. Kalinich

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

William F. Blakely

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Charles E. Myers

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge