Alexandra C. Nica
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra C. Nica.
Nature Genetics | 2007
Barbara E. Stranger; Alexandra C. Nica; Matthew S. Forrest; Antigone S. Dimas; Christine P. Bird; Claude Beazley; Catherine E. Ingle; Mark Dunning; Paul Flicek; Daphne Koller; Stephen B. Montgomery; Simon Tavaré; Panagiotis Deloukas; Emmanouil T. Dermitzakis
Genetic variation influences gene expression, and this variation in gene expression can be efficiently mapped to specific genomic regions and variants. Here we have used gene expression profiling of Epstein-Barr virus–transformed lymphoblastoid cell lines of all 270 individuals genotyped in the HapMap Consortium to elucidate the detailed features of genetic variation underlying gene expression variation. We find that gene expression is heritable and that differentiation between populations is in agreement with earlier small-scale studies. A detailed association analysis of over 2.2 million common SNPs per population (5% frequency in HapMap) with gene expression identified at least 1,348 genes with association signals in cis and at least 180 in trans. Replication in at least one independent population was achieved for 37% of cis signals and 15% of trans signals, respectively. Our results strongly support an abundance of cis-regulatory variation in the human genome. Detection of trans effects is limited but suggests that regulatory variation may be the key primary effect contributing to phenotypic variation in humans. We also explore several methodologies that improve the current state of analysis of gene expression variation.
Nature Genetics | 2012
Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio
Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.
PLOS Genetics | 2012
Jordana T. Bell; Pei-Chien Tsai; Tsun-Po Yang; Ruth Pidsley; James Nisbet; Daniel Glass; Massimo Mangino; Guangju Zhai; Feng Zhang; Ana M. Valdes; So-Youn Shin; Emma Dempster; Robin M. Murray; Elin Grundberg; Åsa K. Hedman; Alexandra C. Nica; Kerrin S. Small; Emmanouil T. Dermitzakis; Mark I. McCarthy; Jonathan Mill; Tim D. Spector; Panos Deloukas
Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype–phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a small set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects on age-related phenotypes.
Nature Genetics | 2011
Jaspal S. Kooner; Danish Saleheen; Xueling Sim; Joban Sehmi; Weihua Zhang; Philippe Frossard; Latonya F. Been; Kee Seng Chia; Antigone S. Dimas; Neelam Hassanali; Tazeen H. Jafar; Jeremy B. M. Jowett; Xinzhong Li; Venkatesan Radha; Simon D. Rees; Fumihiko Takeuchi; Robin Young; Tin Aung; Abdul Basit; Manickam Chidambaram; Debashish Das; Elin Grundberg; Åsa K. Hedman; Zafar I. Hydrie; Muhammed Islam; Chiea Chuen Khor; Sudhir Kowlessur; Malene M. Kristensen; Samuel Liju; Wei-Yen Lim
We carried out a genome-wide association study of type-2 diabetes (T2D) in individuals of South Asian ancestry. Our discovery set included 5,561 individuals with T2D (cases) and 14,458 controls drawn from studies in London, Pakistan and Singapore. We identified 20 independent SNPs associated with T2D at P < 10−4 for testing in a replication sample of 13,170 cases and 25,398 controls, also all of South Asian ancestry. In the combined analysis, we identified common genetic variants at six loci (GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2 and HNF4A) newly associated with T2D (P = 4.1 × 10−8 to P = 1.9 × 10−11). SNPs at GRB14 were also associated with insulin sensitivity (P = 5.0 × 10−4), and SNPs at ST6GAL1 and HNF4A were also associated with pancreatic beta-cell function (P = 0.02 and P = 0.001, respectively). Our findings provide additional insight into mechanisms underlying T2D and show the potential for new discovery from genetic association studies in South Asians, a population with increased susceptibility to T2D.
PLOS Genetics | 2012
Barbara E. Stranger; Stephen B. Montgomery; Antigone S. Dimas; Leopold Parts; Oliver Stegle; Catherine E. Ingle; Magda Sekowska; George Davey Smith; David E. Evans; Maria Gutierrez-Arcelus; Alkes L. Price; Towfique Raj; James Nisbett; Alexandra C. Nica; Claude Beazley; Richard Durbin; Panos Deloukas; Emmanouil T. Dermitzakis
The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs) after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for the transferability of complex trait variants across populations.
PLOS Genetics | 2011
Alexandra C. Nica; Leopold Parts; Daniel Glass; James Nisbet; Amy Barrett; Magdalena Sekowska; Mary E. Travers; Simon Potter; Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Veronique Bataille; Jordana T. Bell; Gabriela Surdulescu; Antigone S. Dimas; Catherine E. Ingle; Frank O. Nestle; Paola Di Meglio; Josine L. Min; Alicja Wilk; Christopher J. Hammond; Neelam Hassanali; Tsun-Po Yang; Stephen B. Montgomery; Steve O'Rahilly; Cecilia M. Lindgren; Krina T. Zondervan; Nicole Soranzo; Inês Barroso; Richard Durbin
While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.
Nature Genetics | 2011
Kerrin S. Small; Åsa K. Hedman; Elin Grundberg; Alexandra C. Nica; Gudmar Thorleifsson; Augustine Kong; Unnur Thorsteindottir; So-Youn Shin; Hannah B Richards; Nicole Soranzo; Kourosh R. Ahmadi; Cecilia M. Lindgren; Kari Stefansson; Emmanouil T. Dermitzakis; Panos Deloukas; Tim D. Spector; Mark I. McCarthy
Genome-wide association studies have identified many genetic variants associated with complex traits. However, at only a minority of loci have the molecular mechanisms mediating these associations been characterized. In parallel, whereas cis regulatory patterns of gene expression have been extensively explored, the identification of trans regulatory effects in humans has attracted less attention. Here we show that the type 2 diabetes and high-density lipoprotein cholesterol–associated cis-acting expression quantitative trait locus (eQTL) of the maternally expressed transcription factor KLF14 acts as a master trans regulator of adipose gene expression. Expression levels of genes regulated by this trans-eQTL are highly correlated with concurrently measured metabolic traits, and a subset of the trans-regulated genes harbor variants directly associated with metabolic phenotypes. This trans-eQTL network provides a mechanistic understanding of the effect of the KLF14 locus on metabolic disease risk and offers a potential model for other complex traits.
PLOS Genetics | 2009
Nicole Soranzo; Fernando Rivadeneira; Usha Chinappen-Horsley; Ida Malkina; J. Brent Richards; Naomi Hammond; Lisette Stolk; Alexandra C. Nica; Michael Inouye; Albert Hofman; Jonathan Stephens; Eleanor Wheeler; Pascal P. Arp; Rhian Gwilliam; P. Mila Jhamai; Simon Potter; Amy Chaney; Mohammed J. R. Ghori; Radhi Ravindrarajah; Sergey Ermakov; Karol Estrada; Huibert A. P. Pols; Frances M. K. Williams; Wendy L. McArdle; Joyce B. J. van Meurs; Ruth J. F. Loos; Emmanouil T. Dermitzakis; Kourosh R. Ahmadi; Deborah J. Hart; Willem H. Ouwehand
Recent genome-wide (GW) scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1×10−8 and rs910316 in TMED10, P-value = 1.4×10−7) and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3×10−7 and rs849141 in JAZF1, P-value = 3.2×10−11). One locus (rs1182188 at GNA12) identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk) and lower-body (hip axis and femur) skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4×10−5 and rs6817306 in LCORL, P-value = 4×10−4), hip axis length (including rs6830062 at LCORL, P-value = 4.8×10−4 and rs4911494 at UQCC, P-value = 1.9×10−4), and femur length (including rs710841 at PRKG2, P-value = 2.4×10−5 and rs10946808 at HIST1H1D, P-value = 6.4×10−6). Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.
Genome Biology | 2013
Daniel Glass; Ana Viñuela; Matthew N. Davies; Adaikalavan Ramasamy; Leopold Parts; David Knowles; Andrew Anand Brown; Åsa K. Hedman; Kerrin S. Small; Alfonso Buil; Elin Grundberg; Alexandra C. Nica; Paola Di Meglio; Frank O. Nestle; Mina Ryten; Richard Durbin; Mark I. McCarthy; Panagiotis Deloukas; Emmanouil T. Dermitzakis; Michael E. Weale; Veronique Bataille; Tim D. Spector
BackgroundPrevious studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age.ResultsUsing a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues.ConclusionsSkin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.
Genome Research | 2013
Alexandra C. Nica; Halit Ongen; Jean-Claude Irminger; Domenico Bosco; Thierry Berney; Philippe A. Halban; Emmanouil T. Dermitzakis
Elucidating the pathophysiology and molecular attributes of common disorders as well as developing targeted and effective treatments hinges on the study of the relevant cell type and tissues. Pancreatic beta cells within the islets of Langerhans are centrally involved in the pathogenesis of both type 1 and type 2 diabetes. Describing the differentiated state of the human beta cell has been hampered so far by technical (low resolution microarrays) and biological limitations (whole islet preparations rather than isolated beta cells). We circumvent these by deep RNA sequencing of purified beta cells from 11 individuals, presenting here the first characterization of the human beta cell transcriptome. We perform the first comparison of gene expression profiles between beta cells, whole islets, and beta cell depleted islet preparations, revealing thus beta-cell-specific expression and splicing signatures. Further, we demonstrate that genes with consistent increased expression in beta cells have neuronal-like properties, a signal previously hypothesized. Finally, we find evidence for extensive allelic imbalance in expression and uncover genetic regulatory variants (eQTLs) active in beta cells. This first molecular blueprint of the human beta cell offers biological insight into its differentiated function, including expression of key genes associated with both major types of diabetes.