Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanouil T. Dermitzakis is active.

Publication


Featured researches published by Emmanouil T. Dermitzakis.


Nature | 2010

Integrating common and rare genetic variation in diverse human populations.

David Altshuler; Richard A. Gibbs; Leena Peltonen; Emmanouil T. Dermitzakis; Stephen F. Schaffner; Fuli Yu; Penelope E. Bonnen; de Bakker Pi; Panos Deloukas; Stacey Gabriel; R. Gwilliam; Sarah Hunt; Michael Inouye; Xiaoming Jia; Aarno Palotie; Melissa Parkin; Pamela Whittaker; Kyle Chang; Alicia Hawes; Lora Lewis; Yanru Ren; David A. Wheeler; Donna M. Muzny; C. Barnes; Katayoon Darvishi; Joshua M. Korn; Kristiansson K; Cin-Ty A. Lee; McCarrol Sa; James Nemesh

Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called ‘HapMap 3’, includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of ≤5%, and demonstrated the feasibility of imputing newly discovered CNPs and SNPs. This expanded public resource of genome variants in global populations supports deeper interrogation of genomic variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.


Nature Genetics | 2007

Population genomics of human gene expression

Barbara E. Stranger; Alexandra C. Nica; Matthew S. Forrest; Antigone S. Dimas; Christine P. Bird; Claude Beazley; Catherine E. Ingle; Mark Dunning; Paul Flicek; Daphne Koller; Stephen B. Montgomery; Simon Tavaré; Panagiotis Deloukas; Emmanouil T. Dermitzakis

Genetic variation influences gene expression, and this variation in gene expression can be efficiently mapped to specific genomic regions and variants. Here we have used gene expression profiling of Epstein-Barr virus–transformed lymphoblastoid cell lines of all 270 individuals genotyped in the HapMap Consortium to elucidate the detailed features of genetic variation underlying gene expression variation. We find that gene expression is heritable and that differentiation between populations is in agreement with earlier small-scale studies. A detailed association analysis of over 2.2 million common SNPs per population (5% frequency in HapMap) with gene expression identified at least 1,348 genes with association signals in cis and at least 180 in trans. Replication in at least one independent population was achieved for 37% of cis signals and 15% of trans signals, respectively. Our results strongly support an abundance of cis-regulatory variation in the human genome. Detection of trans effects is limited but suggests that regulatory variation may be the key primary effect contributing to phenotypic variation in humans. We also explore several methodologies that improve the current state of analysis of gene expression variation.


Nature | 2013

Transcriptome and genome sequencing uncovers functional variation in humans.

Tuuli Lappalainen; Michael Sammeth; Marc R. Friedländer; Peter A. C. 't Hoen; Jean Monlong; Manuel A. Rivas; Mar Gonzàlez-Porta; Natalja Kurbatova; Thasso Griebel; Pedro G. Ferreira; Matthias Barann; Thomas Wieland; Liliana Greger; M. van Iterson; Jonas Carlsson Almlöf; Paolo Ribeca; Irina Pulyakhina; Daniela Esser; Thomas Giger; Andrew Tikhonov; Marc Sultan; G. Bertier; Daniel G. MacArthur; Monkol Lek; Esther Lizano; Henk P. J. Buermans; Ismael Padioleau; Thomas Schwarzmayr; Olof Karlberg; Halit Ongen

Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project—the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.


Science | 2012

A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes

Daniel G. MacArthur; Suganthi Balasubramanian; Adam Frankish; Ni Huang; James A. Morris; Klaudia Walter; Luke Jostins; Lukas Habegger; Joseph K. Pickrell; Stephen B. Montgomery; Cornelis A. Albers; Zhengdong D. Zhang; Donald F. Conrad; Gerton Lunter; Hancheng Zheng; Qasim Ayub; Mark A. DePristo; Eric Banks; Min Hu; Robert E. Handsaker; Jeffrey A. Rosenfeld; Menachem Fromer; Mike Jin; Xinmeng Jasmine Mu; Ekta Khurana; Kai Ye; Mike Kay; Gary Saunders; Marie-Marthe Suner; Toby Hunt

Defective Gene Detective Identifying genes that give rise to diseases is one of the major goals of sequencing human genomes. However, putative loss-of-function genes, which are often some of the first identified targets of genome and exome sequencing, have often turned out to be sequencing errors rather than true genetic variants. In order to identify the true scope of loss-of-function genes within the human genome, MacArthur et al. (p. 823; see the Perspective by Quintana-Murci) extensively validated the genomes from the 1000 Genomes Project, as well as an additional European individual, and found that the average person has about 100 true loss-of-function alleles of which approximately 20 have two copies within an individual. Because many known disease-causing genes were identified in “normal” individuals, the process of clinical sequencing needs to reassess how to identify likely causative alleles. Validation of predicted nonfunctional alleles in the human genome affects the medical interpretation of genomic analyses. Genome-sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease–causing variants, as well as common LoF variants in nonessential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes and a method for using these differences to prioritize candidate genes found in clinical sequencing studies.


Nature | 2010

Transcriptome genetics using second generation sequencing in a Caucasian population.

Stephen B. Montgomery; Micha Sammeth; Maria Gutierrez-Arcelus; Radoslaw P. Lach; Catherine E. Ingle; James Nisbett; Roderic Guigo; Emmanouil T. Dermitzakis

Gene expression is an important phenotype that informs about genetic and environmental effects on cellular state. Many studies have previously identified genetic variants for gene expression phenotypes using custom and commercially available microarrays. Second generation sequencing technologies are now providing unprecedented access to the fine structure of the transcriptome. We have sequenced the mRNA fraction of the transcriptome in 60 extended HapMap individuals of European descent and have combined these data with genetic variants from the HapMap3 project. We have quantified exon abundance based on read depth and have also developed methods to quantify whole transcript abundance. We have found that approximately 10 million reads of sequencing can provide access to the same dynamic range as arrays with better quantification of alternative and highly abundant transcripts. Correlation with SNPs (small nucleotide polymorphisms) leads to a larger discovery of eQTLs (expression quantitative trait loci) than with arrays. We also detect a substantial number of variants that influence the structure of mature transcripts indicating variants responsible for alternative splicing. Finally, measures of allele-specific expression allowed the identification of rare eQTLs and allelic differences in transcript structure. This analysis shows that high throughput sequencing technologies reveal new properties of genetic effects on the transcriptome and allow the exploration of genetic effects in cellular processes.


Science | 2009

Common regulatory variation impacts gene expression in a cell type dependent manner

Antigone S. Dimas; Samuel Deutsch; Barbara E. Stranger; Stephen B. Montgomery; Christelle Borel; Homa Attar-Cohen; Catherine E. Ingle; Claude Beazley; Maria Gutierrez Arcelus; Magdalena Sekowska; Marilyne Gagnebin; James Nisbett; Panos Deloukas; Emmanouil T. Dermitzakis

Tissue-Specific Control The effect of genetic variation on gene expression and phenotype among individuals is largely unknown. Dimas et al. (p. 1246, published online 30 July 2009) show that in humans there are several genes whose allelic expression varies in a tissue-specific manner and are apparently controlled by cis elements. Up to 80% of variants seem to have tissue-specific functions when compared in fibroblasts, as well as B cells and T cells. This variation among regulatory variants correlated with transcript complexity, which suggests that some of the observed regulatory variation is due to genotype-specific use of transcripts and transcription start sites. Genetic variation in regulatory elements among humans affects gene expression in a tissue-specific manner. Studies correlating genetic variation to gene expression facilitate the interpretation of common human phenotypes and disease. As functional variants may be operating in a tissue-dependent manner, we performed gene expression profiling and association with genetic variants (single-nucleotide polymorphisms) on three cell types of 75 individuals. We detected cell type–specific genetic effects, with 69 to 80% of regulatory variants operating in a cell type–specific manner, and identified multiple expressive quantitative trait loci (eQTLs) per gene, unique or shared among cell types and positively correlated with the number of transcripts per gene. Cell type–specific eQTLs were found at larger distances from genes and at lower effect size, similar to known enhancers. These data suggest that the complete regulatory variant repertoire can only be uncovered in the context of cell-type specificity.


Nature Genetics | 2012

Mapping cis- and trans-regulatory effects across multiple tissues in twins

Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio

Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.


PLOS Genetics | 2008

High-Resolution Mapping of Expression-QTLs Yields Insight into Human Gene Regulation

Jean-Baptiste Veyrieras; Sridhar Kudaravalli; Su Yeon Kim; Emmanouil T. Dermitzakis; Yoav Gilad; Matthew Stephens; Jonathan K. Pritchard

Recent studies of the HapMap lymphoblastoid cell lines have identified large numbers of quantitative trait loci for gene expression (eQTLs). Reanalyzing these data using a novel Bayesian hierarchical model, we were able to create a surprisingly high-resolution map of the typical locations of sites that affect mRNA levels in cis. Strikingly, we found a strong enrichment of eQTLs in the 250 bp just upstream of the transcription end site (TES), in addition to an enrichment around the transcription start site (TSS). Most eQTLs lie either within genes or close to genes; for example, we estimate that only 5% of eQTLs lie more than 20 kb upstream of the TSS. After controlling for position effects, SNPs in exons are ∼2-fold more likely than SNPs in introns to be eQTLs. Our results suggest an important role for mRNA stability in determining steady-state mRNA levels, and highlight the potential of eQTL mapping as a high-resolution tool for studying the determinants of gene regulation.


Nature Reviews Genetics | 2004

Chromosome 21 and Down syndrome: from genomics to pathophysiology

Robert Lyle; Emmanouil T. Dermitzakis; Alexandre Reymond; Samuel Deutsch

The sequence of chromosome 21 was a turning point for the understanding of Down syndrome. Comparative genomics is beginning to identify the functional components of the chromosome and that in turn will set the stage for the functional characterization of the sequences. Animal models combined with genome-wide analytical methods have proved indispensable for unravelling the mysteries of gene dosage imbalance.


PLOS Genetics | 2012

Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing Population

Jordana T. Bell; Pei-Chien Tsai; Tsun-Po Yang; Ruth Pidsley; James Nisbet; Daniel Glass; Massimo Mangino; Guangju Zhai; Feng Zhang; Ana M. Valdes; So-Youn Shin; Emma Dempster; Robin M. Murray; Elin Grundberg; Åsa K. Hedman; Alexandra C. Nica; Kerrin S. Small; Emmanouil T. Dermitzakis; Mark I. McCarthy; Jonathan Mill; Tim D. Spector; Panos Deloukas

Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype–phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a small set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects on age-related phenotypes.

Collaboration


Dive into the Emmanouil T. Dermitzakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge