Alexandra Chassanoff
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra Chassanoff.
American Archivist | 2018
Alexandra Chassanoff
ABSTRACT Widespread digitization of cultural heritage materials and access to digital tools have altered the scholarly research landscape. For historian scholars who use archival sources to constru...
Archive | 2016
Alexandra Chassanoff; Kam Woods; Christopher A. Lee
Many libraries, archives, and museums are now regularly acquiring, processing, and analyzing born-digital materials. Materials exist on a variety of source media, including flash drives, hard drives, floppy disks, and optical media. Extracting disk images (i.e., sector-by-sector copies of digital media) is an increasingly common practice. It can be essential to ensuring provenance, original order, and chain of custody. Disk images allow users to explore and interact with the original data without risk of permanent alteration. These replicas help institutions to safeguard against modifications to underlying data that can occur when a file system contained on a storage medium is mounted, or a bootable medium is powered up. Retention of disk images can substantially reduce preservation risks. Digital storage media become progressively difficult (or impossible) to read over time, due to “bit rot,” obsolescence of media, and reduced availability of devices to read them. Simply copying the allocated files off a disk and discarding the storage carrier, however, can be problematic. The ability to access and render the content of files can depend upon the presence of other data that resided on the disk. These dependencies are often not obvious upon first inspection and may only be discovered after the original medium is no longer readable or available. Disk images also enable a wide range of potential access approaches, including dynamic browsing of disk images (Misra S, Lee CA, Woods K (2014) A Web Service for File-Level Access to Disk Images. Code4Lib Journal, 25 [3]) and emulation of earlier computing platforms. Disk images often contain residual data, which may consist of previously hidden or deleted files (Redwine G, et al. in Born digital: guidance for donors, dealers, and archival repositories. Council on Library and Information Resources, Washington, 2013 [4]). Residual data can be valuable for scholars interested in learning about the context of creation. Traces of activities undertaken in the original environment—for example, identifying removable media connected to a host machine or finding contents of browser caches—can provide additional sources of information for researchers and facilitate the preservation of materials (Woods K, et al. in Proceedings of the 11th annual international ACM/IEEE joint conference on digital libraries, pp. 57–66, 2011 [5]). Digital forensic tools can be used to create disk images in a wide range of formats. These include raw files (such as those produced by the Unix tool dd). Quantifying successes and failures for many tools can require judgment calls by qualified digital curation professionals. Verifying a checksum for a file is a simple case; the checksums either match or are different. In the events described in the previous sections, however, the conditions for success are fuzzier. For example, fiwalk will often “successfully” complete whether or not it is able to extract a meaningful record of the contents of file system(s) on a disk image. Likewise, bulk_extractor will simply report items of interest it has discovered. Knowing whether this output is useful (and whether it has changed between separate executions of a given tool) depends on comparison of the output between the two runs, information not currently recorded in the PREMIS document. In the BitCurator implementation, events are often recorded as having completed, rather than as having succeeded, to avoid ambiguity. Future iterations of the implementation may include more nuanced descriptions of event outcomes.
International Journal of Digital Curation | 2014
Sam Meister; Alexandra Chassanoff
In this paper, we investigate how digital forensics tools can support digital curation tasks around the acquisition, processing, management and analysis of born-digital materials. Using a real world born-digital collection as our use case, we describe how BitCurator, a digital forensics open source software environment, supports fundamental curatorial activities such as secure data transfer, assurance of authenticity and integrity, and the identification and elimination of private and/or sensitive information. We also introduce a workflow diagram that articulates the processing steps for institutions processing born-digital materials. Finally, we review possibilities for further integration, development and use of digital forensic tools.
metadata and semantics research | 2011
David Stuart; Brian Aitken; Daisy Abbott; Alexandra Chassanoff; Mark Hedges; Andrew McHugh
In this paper we describe a framework to increase the accessibility and reuse of objects stored in digital repositories. In many cases digital repositories are created with little consideration to the wider information environment, or the extension of the repository to items beyond the initial collection. The CMES framework emphasizes providing a structure for creating appropriate content models, selecting appropriate metadata schemas, and the need for a modular approach to the creation of a user interface.
American Archivist | 2013
Alexandra Chassanoff
D-lib Magazine | 2012
Christopher A. Lee; Alexandra Chassanoff; Kam Woods; Matthew G. Kirschenbaum; Porter Olsen
iPRES | 2010
David Pcolar; Richard Marciano; Chien-Yi Hou; Alexandra Chassanoff; Daniel W. Davis; Bing Zhu
iPRES | 2015
Wiliam Walker Sampson; Alexandra Chassanoff
iPRES | 2013
Kam Woods; Alexandra Chassanoff; Christopher A. Lee
DH | 2013
Matthew G. Kirschenbaum; Cal Lee; Kam Woods; Alexandra Chassanoff; Porter Olsen; Sunitha Mithra