Alexandra-Chloé Villani
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra-Chloé Villani.
Science | 2016
Itay Tirosh; Benjamin Izar; Sanjay Prakadan; Marc H. Wadsworth; Daniel J. Treacy; John J. Trombetta; Asaf Rotem; Christopher Rodman; Christine G. Lian; George F. Murphy; Mohammad Fallahi-Sichani; Ken Dutton-Regester; Jia-Ren Lin; Ofir Cohen; Parin Shah; Diana Lu; Alex S. Genshaft; Travis K. Hughes; Carly G.K. Ziegler; Samuel W. Kazer; Aleth Gaillard; Kellie E. Kolb; Alexandra-Chloé Villani; Cory M. Johannessen; Aleksandr Andreev; Eliezer M. Van Allen; Monica M. Bertagnolli; Peter K. Sorger; Ryan J. Sullivan; Keith T. Flaherty
Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.
Nature Genetics | 2009
Alexandra-Chloé Villani; Mathieu Lemire; Geneviève Fortin; Edouard Louis; Mark S. Silverberg; Catherine Collette; Nobuyasu Baba; Cécile Libioulle; Jacques Belaiche; Alain Bitton; Daniel Gaudet; Albert Cohen; Diane Langelier; Paul R. Fortin; Joan Wither; Marika Sarfati; Paul Rutgeerts; John D. Rioux; Severine Vermeire; Thomas J. Hudson; Denis Franchimont
We used a candidate gene approach to identify a set of SNPs, located in a predicted regulatory region on chromosome 1q44 downstream of NLRP3 (previously known as CIAS1 and NALP3) that are associated with Crohns disease. The associations were consistently replicated in four sample sets from individuals of European descent. In the combined analysis of all samples (710 father-mother-child trios, 239 cases and 107 controls), these SNPs were strongly associated with risk of Crohns disease (Pcombined = 3.49 × 10−9, odds ratio = 1.78, confidence interval = 1.47–2.16 for rs10733113), reaching a level consistent with the stringent significance thresholds imposed by whole-genome association studies. In addition, we observed significant associations between SNPs in the associated regions and NLRP3 expression and IL-1β production. Mutations in NLRP3 are known to be responsible for three rare autoinflammatory disorders. These results suggest that the NLRP3 region is also implicated in the susceptibility of more common inflammatory diseases such as Crohns disease.
Science | 2014
Mark Lee; Chun Ye; Alexandra-Chloé Villani; Towfique Raj; Weibo Li; Thomas Eisenhaure; Selina Imboywa; Portia Chipendo; F. Ann Ran; Kamil Slowikowski; Lucas D. Ward; Cristin McCabe; Michelle Lee; Irene Y. Frohlich; David A. Hafler; Manolis Kellis; Soumya Raychaudhuri; Feng Zhang; Barbara E. Stranger; Christophe Benoist; Philip L. De Jager; Aviv Regev; Nir Hacohen
Introduction Variation in an individual’s response to environmental factors is likely to influence susceptibility to complex human diseases. The genetic basis of such variation is poorly understood. Here, we identify natural genetic variants that underlie variation in the host innate immune response to infection and analyze the mechanisms by which such variants alter these responses. Identifying the genetic basis of variability in the host response to pathogens. A cohort of 534 individuals donated blood for (a) genotyping of common DNA variants and (b) isolation of immune DCs. DCs were stimulated with viral and bacterial components, and the variability in individuals’ gene expression responses was mapped to specific DNA variants, which were then shown to affect binding of particular transcription factors. Methods We derived dendritic cells (DCs) from peripheral blood monocytes of healthy individuals (295 Caucasians, 122 African Americans, 117 East Asians) and stimulated them with Escherichia coli lipopolysaccharide (LPS), influenza virus, or the cytokine interferon-β (IFN-β) to generate 1598 transcriptional profiles. We genotyped each of these individuals at sites of common genetic variation and identified the genetic variants that best explain variation in gene expression and gene induction between individuals. We then tested mechanistic predictions from these associations using synthetic promoter constructs and genome engineering. Results We identified 264 loci containing genetic variants associated with variation in absolute gene expression in human DCs, of which 121 loci were associated with variation in the induction of gene expression by one or more stimuli. Fine-mapping identified candidate causal single-nucleotide polymorphisms (SNPs) associated with expression variance, and deeper functional experiments localized three of these SNPs to the binding sites of stimulus-activated transcription factors. We also identified a cis variant in the transcription factor, IRF7, associated in trans with the induction of a module of antiviral genes in response to influenza infection. Of the identified genetic variants, 35 were also associated with autoimmune or infectious disease loci found by genome-wide association studies. Discussion The genetic variants we uncover and the molecular basis for their action provide mechanistic explanations and principles for how the innate immune response to pathogens and cytokines varies across individuals. Our results also link disease-associated variants to specific immune pathways in DCs, which provides greater insight into mechanisms underlying complex human phenotypes. Extending our approach to many immune cell types and pathways will provide a global map linking human genetic variants to specific immunological processes. Immune Variation It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression. M. N. Lee et al. (10.1126/science.1246980) analyzed the expression of more than 400 genes, in dendritic cells from 534 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways. Fairfax et al. (10.1126/science.1246949) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner. Mapping of human host-pathogen gene-by-environment interactions identifies pathogen-specific loci. [Also see Perspective by Gregersen] Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.
Science | 2017
Alexandra-Chloé Villani; Rahul Satija; Gary Reynolds; Siranush Sarkizova; Karthik Shekhar; James Fletcher; Morgane Griesbeck; Andrew Butler; Shiwei Zheng; Suzan Lazo; Laura Jardine; David Dixon; Emily Stephenson; Emil Nilsson; Ida Grundberg; David McDonald; Andrew Filby; Weibo Li; Philip L. De Jager; Orit Rozenblatt-Rosen; Andrew A. Lane; Muzlifah Haniffa; Aviv Regev; Nir Hacohen
Whats in a drop of blood? Blood contains many types of cells, including many immune system components. Immune cells used to be characterized by marker-based assays, but now classification relies on the genes that cells express. Villani et al. used deep sequencing at the single-cell level and unbiased clustering to define six dendritic cell and four monocyte populations. This refined analysis has identified, among others, a previously unknown dendritic cell population that potently activates T cells. Further cell culture revealed possible differentiation progenitors within the different cell populations. Science, this issue p. eaah4573 Discovery of additional immune cell subtypes will help identify functions and immune monitoring during disease. INTRODUCTION Dendritic cells (DCs) and monocytes consist of multiple specialized subtypes that play a central role in pathogen sensing, phagocytosis, and antigen presentation. However, their identities and interrelationships are not fully understood, as these populations have historically been defined by a combination of morphology, physical properties, localization, functions, developmental origins, and expression of a restricted set of surface markers. RATIONALE To overcome this inherently biased strategy for cell identification, we performed single-cell RNA sequencing of ~2400 cells isolated from healthy blood donors and enriched for HLA-DR+ lineage− cells. This single-cell profiling strategy and unbiased genomic classification, together with follow-up profiling and functional and phenotypic characterization of prospectively isolated subsets, led us to identify and validate six DC subtypes and four monocyte subtypes, and thus revise the taxonomy of these cells. RESULTS Our study reveals: 1) A new DC subset, representing 2 to 3% of the DC populations across all 10 donors tested, characterized by the expression of AXL, SIGLEC1, and SIGLEC6 antigens, named AS DCs. The AS DC population further divides into two populations captured in the traditionally defined plasmacytoid DC (pDC) and CD1C+ conventional DC (cDC) gates. This split is further reflected through AS DC gene expression signatures spanning a spectrum between cDC-like and pDC-like gene sets. Although AS DCs share properties with pDCs, they more potently activate T cells. This discovery led us to reclassify pDCs as the originally described “natural interferon-producing cells (IPCs)” with weaker T cell proliferation induction ability. 2) A new subdivision within the CD1C+ DC subset: one defined by a major histocompatibility complex class II–like gene set and one by a CD14+ monocyte–like prominent gene set. These CD1C+ DC subsets, which can be enriched by combining CD1C with CD32B, CD36, and CD163 antigens, can both potently induce T cell proliferation. 3) The existence of a circulating and dividing cDC progenitor giving rise to CD1C+ and CLEC9A+ DCs through in vitro differentiation assays. This blood precursor is defined by the expression of CD100+CD34int and observed at a frequency of ~0.02% of the LIN–HLA-DR+ fraction. 4) Two additional monocyte populations: one expressing classical monocyte genes and cytotoxic genes, and the other with unknown functions. 5) Evidence for a relationship between blastic plasmacytoid DC neoplasia (BPDCN) cells and healthy DCs. CONCLUSION Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease. The discovery of AS DCs within the traditionally defined pDC population explains many of the cDC properties previously assigned to pDCs, highlighting the need to revisit the definition of pDCs. Furthermore, the discovery of blood cDC progenitors represents a new therapeutic target readily accessible in the bloodstream for manipulation, as well as a new source for better in vitro DC generation. Although the current results focus on DCs and monocytes, a similar strategy can be applied to build a comprehensive human immune cell atlas. Establishing a human blood monocyte and dendritic cell atlas. We isolated ~2400 cells enriched from the healthy human blood lineage− HLA-DR+ compartment and subjected them to single-cell RNA sequencing. This strategy, together with follow-up profiling and functional and phenotypic characterization, led us to update the original cell classification to include six DCs, four monocyte subtypes, and one conventional DC progenitor. Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis, and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease.
Gastroenterology | 2010
Alexandra-Chloé Villani; Mathieu Lemire; Marroon Thabane; Alexandre Belisle; Geneviève Geneau; Amit X. Garg; William F. Clark; Paul Moayyedi; Stephen M. Collins; Denis Franchimont; John K. Marshall
BACKGROUND & AIMS Acute gastroenteritis is the strongest risk factor for irritable bowel syndrome (IBS). In May 2000, >2300 residents of Walkerton, Ontario, developed gastroenteritis from microbial contamination of the municipal water supply; a longitudinal study found that >36.2% of these developed IBS. We used this cohort to study genetic susceptibility to post-infectious (PI)-IBS. METHODS We screened 79 functional variants of genes with products involved in serotoninergic pathways, intestinal epithelial barrier function, and innate immunity and performed fine mapping in regions of interest. We compared data from Walkerton residents who developed gastroenteritis and reported PI-IBS 2 to 3 years after the outbreak (n = 228, cases) with data from residents who developed gastroenteritis but did not develop PI-IBS (n = 581, controls). RESULTS Four variants were associated with PI-IBS, although the association was not significant after correction for the total number of single nucleotide polymorphisms. Two were located in TLR9, which encodes a pattern recognition receptor (rs352139, P545P; P = .0059 and rs5743836, -T1237C; P = .0250; r(2) < 0.14); 1 was in CDH1, which encodes a tight junction protein (rs16260, -C160A; P = .0352); and 1 was in IL6, which encodes a cytokine (rs1800795, -G174C; P = .0420). Denser mapping of these 3 regions revealed 1 novel association in IL6 (rs2069861; P = .0069) and 14 associations that could be accounted for by linkage disequilibrium with the 4 original variants. The TLR9, IL6, and CDH1 variants all persisted as independent risk factors for PI-IBS when controlling for previously identified clinical risk factors. CONCLUSION This is the first descriptive study to assess potential genetic determinants of PI-IBS. Genes that encode proteins involved in epithelial cell barrier function and the innate immune response to enteric bacteria are associated with development of IBS following acute gastroenteritis.
The American Journal of Gastroenterology | 2005
Kevin A. Waschke; Alexandra-Chloé Villani; Severine Vermeire; Line Dufresne; Tsao-Chun Chen; Alain Bitton; Albert Cohen; Alan Thomson; Gary Wild
OBJECTIVES:Crohns disease (CD) is a chronic multifactorial disorder with diverse clinical features that are influenced by a heterogeneous set of genetic factors. TNF-α/TNF receptor interactions play a pivotal role in the pathogenesis of the inflammatory response. Our purpose was to determine whether single nucleotide polymorphisms (SNPs) in the TNF receptors confer susceptibility to Crohns disease and whether they are associated with clinical phenotype.METHODS:A cohort of 205 consecutively identified and unrelated patients with CD and 106 controls were recruited. Subjects were genotyped for polymorphisms in TNFRSF1A (position +36, −609), TNFRSF1B (+196, +1466), along with the three common CARD15 variants and phenotyped for disease behavior. Genotypic and allelic frequencies were compared between CD and controls and a logistic regression model was constructed to determine independent associations with specific clinical phenotypes.RESULTS:Only the TNFRSF1A +36 and TNFRSF1B +196 SNPs were associated with CD (p = 0.0019 and 0.034, respectively). The TNFRSF1A +36 mutation was negatively associated with stricturing disease phenotype (OR = 0.384; CI = 0.166–0.887). In contrast, the TNFRSF1B +196 was negatively associated with colitis (OR = 0.410; CI = 0.191–0.880). These associations were independent of CARD15 mutation status. Finally, TNFRSF1B +196 was negatively associated with surgery in CARD15 negative patients.CONCLUSIONS:These data constitute the first report of an association of TNFRSF1A and TNFRSF1B polymorphisms with CD in a Caucasian population and address the role of TNFR mutations in determining clinical heterogeneity in CD.
Nature Immunology | 2013
Mark Lee; Matthew Roy; Shao En Ong; Philipp Mertins; Alexandra-Chloé Villani; Weibo Li; Farokh Dotiwala; Jayita Sen; John G. Doench; Megan H. Orzalli; Igor Kramnik; David M. Knipe; Judy Lieberman; Steven A. Carr; Nir Hacohen
The innate immune system senses viral DNA that enters mammalian cells, or in aberrant situations self-DNA, and triggers type I interferon production. Here we present an integrative approach that combines quantitative proteomics, genomics and small molecule perturbations to identify genes involved in this pathway. We silenced 809 candidate genes, measured the response to dsDNA and connected resulting hits with the known signaling network. We identified ABCF1 as a critical protein that associates with dsDNA and the DNA-sensing components HMGB2 and IFI204. We also found that CDC37 regulates the stability of the signaling molecule TBK1 and that chemical inhibition of the CDC37-HSP90 interaction and several other pathway regulators potently modulates the innate immune response to DNA and retroviral infection.
Journal of Immunology | 2015
Morgane Griesbeck; Susanne Ziegler; Sophie Laffont; Nikaïa Smith; Lise Chauveau; Phillip Tomezsko; Armon Sharei; Georgio Kourjian; Filippos Porichis; Meghan G. Hart; Christine D. Palmer; Michael Sirignano; Claudia Beisel; Heike Hildebrandt; Claire Cénac; Alexandra-Chloé Villani; Thomas J. Diefenbach; Sylvie Le Gall; Olivier Schwartz; Jean-Philippe Herbeuval; Brigitte Autran; Jean-Charles Guéry; J. Judy Chang; Marcus Altfeld
Increased IFN-α production contributes to the pathogenesis of infectious and autoimmune diseases. Plasmacytoid dendritic cells (pDCs) from females produce more IFN-α upon TLR7 stimulation than pDCs from males, yet the mechanisms underlying this difference remain unclear. In this article, we show that basal levels of IFN regulatory factor (IRF) 5 in pDCs were significantly higher in females compared with males and positively correlated with the percentage of IFN-α–secreting pDCs. Delivery of recombinant IRF5 protein into human primary pDCs increased TLR7-mediated IFN-α secretion. In mice, genetic ablation of the estrogen receptor 1 (Esr1) gene in the hematopoietic compartment or DC lineage reduced Irf5 mRNA expression in pDCs and IFN-α production. IRF5 mRNA levels furthermore correlated with ESR1 mRNA levels in human pDCs, consistent with IRF5 regulation at the transcriptional level by ESR1. Taken together, these data demonstrate a critical mechanism by which sex differences in basal pDC IRF5 expression lead to higher IFN-α production upon TLR7 stimulation in females and provide novel targets for the modulation of immune responses and inflammation.
Clinical and Experimental Immunology | 2009
Geneviève Fortin; K Yurchenko; Catherine Collette; Manuel Alvarez Rubio; Alexandra-Chloé Villani; Alain Bitton; Marika Sarfati; Denis Franchimont
Allele variants in the L‐carnitine (LCAR) transporters OCTN1 (SLC22A4, 1672 C → T) and OCTN2 (SLC22A5, ‐207 G → C) have been implicated in susceptibility to Crohns disease (CD). LCAR is consumed in the diet and transported actively from the intestinal lumen via the organic cation transporter OCTN2. While recognized mainly for its role in fatty acid metabolism, several lines of evidence suggest that LCAR may also display immunosuppressive properties. This study sought to investigate the immunomodulatory capacity of LCAR on antigen‐presenting cell (APC) and CD4+ T cell function by examining cytokine production and the expression of activation markers in LCAR‐supplemented and deficient cell culture systems. The therapeutic efficacy of its systemic administration was then evaluated during the establishment of colonic inflammation in vivo. LCAR treatment significantly inhibited both APC and CD4+ T cell function, as assessed by the expression of classical activation markers, proliferation and cytokine production. Carnitine deficiency resulted in the hyperactivation of CD4+ T cells and enhanced cytokine production. In vivo, protection from trinitrobenzene sulphonic acid colitis was observed in LCAR‐treated mice and was attributed to the abrogation of both innate [interleukin (IL)‐1β and IL‐6 production] and adaptive (T cell proliferation in draining lymph nodes) immune responses. LCAR therapy may therefore represent a novel alternative therapeutic strategy and highlights the role of diet in CD.
Nature | 2017
Taru Tukiainen; Alexandra-Chloé Villani; Angela Yen; Manuel A. Rivas; Jamie L. Marshall; Rahul Satija; Matt Aguirre; Laura Gauthier; Mark Fleharty; Andrew Kirby; Beryl B. Cummings; Stephane E. Castel; Konrad J. Karczewski; François Aguet; Andrea Byrnes; Tuuli Lappalainen; Aviv Regev; Kristin Ardlie; Nir Hacohen; Daniel G. MacArthur
X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of ‘escape’ from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.