Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra E. Brandimore is active.

Publication


Featured researches published by Alexandra E. Brandimore.


Chest | 2014

Decreased Cough Sensitivity and Aspiration in Parkinson Disease

Michelle S. Troche; Alexandra E. Brandimore; Michael S. Okun; Paul W. Davenport; Karen Wheeler Hegland

BACKGROUND Aspiration pneumonia is a leading cause of death in people with Parkinson disease (PD). The pathogenesis of these infections is largely attributed to the presence of dysphagia with silent aspiration or aspiration without an appropriate cough response. The goal of this study was to test reflex cough thresholds and associated urge-to-cough (UTC) ratings in participants with PD with and without dysphagia. METHODS Twenty participants with PD were recruited for this study. They completed a capsaicin challenge with three randomized blocks of 0, 50, 100, and 200 μM capsaicin and rated their UTC by modified Borg scale. The concentration of capsaicin that elicited a two-cough response, total number of coughs, and sensitivity of the participant to the cough stimulus (UTC) were measured. The dysphagia severity of participants with PD was identified with the penetration-aspiration scale. RESULTS Most participants with PD did not have a consistent two-cough response to 200 μM capsaicin. UTC ratings and total number of coughs produced at 200 μM capsaicin were significantly influenced by dysphagia severity but not by general PD severity, age, or disease duration. Increasing levels of dysphagia severity resulted in significantly blunted cough sensitivity (UTC). CONCLUSIONS UTC ratings may be important in understanding the mechanism underlying morbidity related to aspiration pneumonia in people with PD and dysphagia. Further understanding of decreased UTC in people with PD and dysphagia will be essential for the development of strategies and treatments to address airway protection deficits in this population.


Parkinsonism & Related Disorders | 2014

Comparison of voluntary and reflex cough effectiveness in Parkinson's disease.

Karen Wheeler Hegland; Michelle S. Troche; Alexandra E. Brandimore; Paul W. Davenport; Michael S. Okun

INTRODUCTION Multiple airway protective mechanisms are impacted with Parkinsons disease (PD), including swallowing and cough. Cough serves to eject material from the lower airways, and can be produced voluntarily (on command) and reflexively in response to aspirate material or other airway irritants. Voluntary cough effectiveness is reduced in PD however it is not known whether reflex cough is affected as well. The goal of this study was to compare the effectiveness between voluntary and reflex cough in patients with idiopathic PD. METHODS Twenty patients with idiopathic PD participated. Cough airflow data were recorded via facemask in line with a pneumotachograph. A side delivery port connected the nebulizer for delivery of capsaicin, which was used to induce cough. Three voluntary coughs and three reflex coughs were analyzed from each participant. A two-way repeated measures analysis of variance was used to compare voluntary versus reflex cough airflow parameters. RESULTS Significant differences were found for peak expiratory flow rate (PEFR) and cough expired volume (CEV) between voluntary and reflex cough. Specifically, both PEFR and CEV were reduced for reflex as compared to voluntary cough. CONCLUSION Cough PEFR and CEV are indicative of cough effectiveness in terms of the ability to remove material from the lower airways. Differences between these two cough types likely reflect differences in the coordination of the respiratory and laryngeal subsystems. Clinicians should be aware that evaluation of cough function using voluntary cough tasks overestimates the PEFR and CEV that would be achieved during reflex cough in patients with PD.


Archives of Physical Medicine and Rehabilitation | 2016

Rehabilitation of Swallowing and Cough Functions Following Stroke: An Expiratory Muscle Strength Training Trial

Karen Wheeler Hegland; Paul W. Davenport; Alexandra E. Brandimore; Floris F. Singletary; Michelle S. Troche

OBJECTIVE To determine the effect of expiratory muscle strength training (EMST) on both cough and swallow function in stroke patients. DESIGN Prospective pre-post intervention trial with 1 participant group. SETTING Two outpatient rehabilitation clinics. PARTICIPANTS Adults (N=14) with a history of ischemic stroke in the preceding 3 to 24 months. INTERVENTION EMST. The training program was completed at home and consisted of 25 repetitions per day, 5 days per week, for 5 weeks. MAIN OUTCOME MEASURES Baseline and posttraining measures were maximum expiratory pressure, voluntary cough airflows, reflex cough challenge to 200μmol/L of capsaicin, sensory perception of urge to cough, and fluoroscopic swallow evaluation. Repeated measures and 1-way analyses of variance were used to determine significant differences pre- and posttraining. RESULTS Maximum expiratory pressure increased in all participants by an average of 30cmH2O posttraining. At baseline, all participants demonstrated a blunted reflex cough response to 200μmol/L of capsaicin. After 5 weeks of training, measures of urge to cough and cough effectiveness increased for reflex cough; however, voluntary cough effectiveness did not increase. Swallow function was minimally impaired at baseline, and there were no significant changes in the measures of swallow function posttraining. CONCLUSIONS EMST improves expiratory muscle strength, reflex cough strength, and urge to cough. Voluntary cough and swallow measures were not significantly different posttraining. It may be that stroke patients benefit from the training for upregulation of reflex cough and thus improved airway protection.


Frontiers in Physiology | 2015

Respiratory kinematic and airflow differences between reflex and voluntary cough in healthy young adults

Alexandra E. Brandimore; Michelle S. Troche; Karen Wheeler Hegland

Background: Cough is a defensive behavior that can be initiated in response to a stimulus in the airway (reflexively), or on command (voluntarily). There is evidence to suggest that physiological differences exist between reflex and voluntary cough; however, the output (mechanistic and airflow) differences between the cough types are not fully understood. Therefore, the aims of this study were to determine the lung volume, respiratory kinematic, and airflow differences between reflex and voluntary cough in healthy young adults. Methods: Twenty-five participants (14 female; 18–29 years) were recruited for this study. Participants were evaluated using respiratory inductance plethysmography calibrated with spirometry. Experimental procedures included: (1) respiratory calibration, (2) three voluntary sequential cough trials, and (3) three reflex cough trials induced with 200 μM capsaicin. Results: Lung volume initiation (LVI; p = 0.003) and lung volume excursion (LVE; p < 0.001) were significantly greater for voluntary cough compared to reflex cough. The rib cage and abdomen significantly influenced LVI for voluntary cough (p < 0.001); however, only the rib cage significantly impacted LVI for reflex cough (p < 0.001). LVI significantly influenced peak expiratory flow rate (PEFR) for voluntary cough (p = 0.029), but not reflex cough (p = 0.610). Discussion: Production of a reflex cough results in significant mechanistic and airflow differences compared to voluntary cough. These findings suggest that detection of a tussigenic stimulus modifies motor aspects of the reflex cough behavior. Further understanding of the differences between reflex and voluntary cough in older adults and in persons with dystussia (cough dysfunction) will be essential to facilitate the development of successful cough treatment paradigms.


Dysphagia | 2016

Analysis of Clinicians' Perceptual Cough Evaluation.

Helena Laciuga; Alexandra E. Brandimore; Michelle S. Troche; Karen Wheeler Hegland

This study examined the relationships between subjective descriptors and objective airflow measures of cough. We hypothesized that coughs with specific airflow characteristics would share common subjective perceptual descriptions. Thirty clinicians (speech-language pathologists, otolaryngologists, and neurologists) perceptually evaluated ten cough audio samples with specific airflow characteristics determined by peak expiratory flow rate, cough expired volume, cough duration, and number of coughs in the cough epoch. Participants rated coughs by strength, duration, quality, quantity, and overall potential effectiveness for airway protection. Perception of cough strength and effectiveness was determined by the combination of presence of pre-expulsive compression phase, short peak expiratory airflow rate rise time, high peak expiratory flow rates, and high cough volume acceleration. Perception of cough abnormality was defined predominantly by descriptors of breathiness and strain. Breathiness was characteristic for coughs with either absent compression phases and relatively high expiratory airflow rates or coughs with significantly low expired volumes and reduced peak flow rates. In contrast, excessive strain was associated with prolonged compression phases and low expiratory airflow rates or the absence of compression phase with high peak expiratory rates. The study participants reached greatest agreement in distinguishing between single and multiple coughs. Their assessment of cough strength and effectiveness was less consistent. Finally, the least agreement was shown in determining the quality categories. Modifications of cough airflow can influence perceptual cough evaluation outcomes. However, the inconsistency of cough ratings among our participants suggests that a uniform cough rating system is required.


Journal of Applied Physiology | 2017

Voluntary upregulation of reflex cough is possible in healthy older adults and Parkinson’s disease

Alexandra E. Brandimore; Karen Wheeler Hegland; Michael S. Okun; Paul W. Davenport; Michelle S. Troche

Cough is an airway-protective mechanism that serves to detect and forcefully eject aspirate material. Existing research has identified the ability of healthy young adults to suppress or modify cough motor output based on external cueing. However, no study has evaluated the ability of people with Parkinsons disease (PD) and healthy older adults (HOAs) to upregulate cough motor output. The goal of this study was to evaluate the ability of people with PD and healthy age-matched controls (HOAs) to upregulate reflex and voluntary cough function volitionally with verbal instruction and visual biofeedback of airflow targets. Sixteen participants with PD and twenty-eight HOAs (56-83 yr old) were recruited for this study. Experimental procedures used spirometry to evaluate 1) baseline reflex cough (evoked with capsaicin) and voluntary sequential cough and 2) reflex and voluntary cough with upregulation biofeedback. Cough airflow was recorded and repeated-measures ANOVA was used to analyze differences in cough airflow parameters. Cough peak expiratory airflow rate and cough expired volume were significantly greater in the cueing condition for both induced reflex (P < 0.001) and voluntary cough (P < 0.001) compared with baseline measures. This is the first study to demonstrate the ability of people with PD and HOAs to upregulate induced reflex and voluntary cough motor output volitionally. These results support the development of studies targeting improved cough effectiveness in patients with airway-protective deficits.NEW & NOTEWORTHY Aspiration pneumonia is a leading cause of death in Parkinsons disease (PD) and results from concurrent dysphagia and dystussia (cough dysfunction). This is the first study to demonstrate that people with PD and healthy age-matched controls can volitionally upregulate induced reflex and voluntary cough effectiveness when presented with novel cueing strategies. Thus targeting upregulation of cough effectiveness via biofeedback may be a viable way to enhance airway protection in people with PD.


Parkinsonism & Related Disorders | 2013

Swallowing and deep brain stimulation in Parkinson's disease: a systematic review.

Michelle S. Troche; Alexandra E. Brandimore; Kelly D. Foote; Michael S. Okun


Journal of Applied Oral Science | 2014

A framework for understanding shared substrates of airway protection

Michelle S. Troche; Alexandra E. Brandimore; Juliana Fernandes Godoy; Karen Wheeler Hegland


Dysphagia | 2014

Swallowing Outcomes Following Unilateral STN vs. GPi Surgery: A Retrospective Analysis

Michelle S. Troche; Alexandra E. Brandimore; Kelly D. Foote; Takashi Morishita; Dennis Chen; Karen Wheeler Hegland; Michael S. Okun


Dysphagia | 2016

Comparison of Two Methods for Inducing Reflex Cough in Patients With Parkinson’s Disease, With and Without Dysphagia

Karen Wheeler Hegland; Michelle S. Troche; Alexandra E. Brandimore; Michael S. Okun; Paul W. Davenport

Collaboration


Dive into the Alexandra E. Brandimore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge