Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra G. Fraga is active.

Publication


Featured researches published by Alexandra G. Fraga.


Journal of Immunology | 2006

Cutting Edge: IFN-γ Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection

Andrea Cruz; Shabaana A. Khader; Egídio Torrado; Alexandra G. Fraga; John E. Pearl; Jorge Pedrosa; Andrea M. Cooper; António G. Castro

T cell responses are important to the control of infection but are deleterious if not regulated. IFN-γ-deficient mice infected with mycobacteria exhibit enhanced accumulation of activated effector T cells and neutrophils within granulomatous lesions. These cells do not control bacterial growth and compromise the integrity of the infected tissue. We show that IFN-γ-deficient mice have increased numbers of IL-17-producing T cells following infection with Mycobacterium bovis bacille Calmette Guérin. Furthermore, exogenous IFN-γ increases IL-12 and decreases IL-23 production by bacille Calmette Guérin-infected bone marrow-derived dendritic cells and reduces the frequency of IL-17-producing T cells induced by these bone marrow-derived dendritic cells. These data support the hypothesis that, during mycobacterial infection, both IFN-γ- and IL-17-producing T cells are induced, but that IFN-γ serves to limit the IL-17-producing T cell population. This counterregulation pathway may be an important factor in limiting mycobacterially associated immune-mediated pathology.


Journal of Experimental Medicine | 2010

Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis

Andrea Cruz; Alexandra G. Fraga; Jeffrey J. Fountain; Javier Rangel-Moreno; Egídio Torrado; Margarida Saraiva; Daniela Maria Ramos Pereira; Troy D. Randall; Jorge Pedrosa; Andrea M. Cooper; António G. Castro

Infection usually leads to the development of acquired immune responses associated with clearance or control of the infecting organism. However, if not adequately regulated, immune-mediated pathology can result. Tuberculosis is a worldwide threat, and development of an effective vaccine requires that the protective immune response to Mycobacterium tuberculosis (Mtb) be dissected from the pathological immune response. This distinction is particularly important if new vaccines are to be delivered to Mtb-exposed individuals, as repeated antigenic exposure can lead to pathological complications. Using a model wherein mice are vaccinated with bacille Calmette-Guérin after Mtb infection, we show that repeated vaccination results in increased IL-17, tumor necrosis factor, IL-6, and MIP-2 expression, influx of granulocytes/neutrophils, and lung tissue damage. This pathological response is abrogated in mice deficient in the gene encoding IL-23p19 or in the presence of IL-17–blocking antibody. This finding that repeated exposure to mycobacterial antigen promotes enhanced IL-17–dependent pathological consequences has important implications for the design of effective vaccines against Mtb.


PLOS Neglected Tropical Diseases | 2008

First Cultivation and Characterization of Mycobacterium ulcerans from the Environment

Françoise Portaels; Wayne M. Meyers; Anthony Ablordey; António G. Castro; Karim Chemlal; Pim de Rijk; Pierre Elsen; Krista Fissette; Alexandra G. Fraga; Richard E. Lee; Engy Mahrous; Pamela L. C. Small; Pieter Stragier; Egídio Torrado; Anita Van Aerde; Manuel T. Silva; Jorge Pedrosa

Background Mycobacterium ulcerans disease, or Buruli ulcer (BU), is an indolent, necrotizing infection of skin, subcutaneous tissue and, occasionally, bones. It is the third most common human mycobacteriosis worldwide, after tuberculosis and leprosy. There is evidence that M. ulcerans is an environmental pathogen transmitted to humans from aquatic niches; however, well-characterized pure cultures of M. ulcerans from the environment have never been reported. Here we present details of the isolation and characterization of an M. ulcerans strain (00-1441) obtained from an aquatic Hemiptera (common name Water Strider, Gerris sp.) from Benin. Methodology/Principal Findings One culture from a homogenate of a Gerris sp. in BACTEC became positive for IS2404, an insertion sequence with more than 200 copies in M. ulcerans. A pure culture of M. ulcerans 00-1441 was obtained on Löwenstein-Jensen medium after inoculation of BACTEC culture in mouse footpads followed by two other mouse footpad passages. The phenotypic characteristics of 00-1441 were identical to those of African M. ulcerans, including production of mycolactone A/B. The nucleotide sequence of the 5′ end of 16S rRNA gene of 00-1441 was 100% identical to M. ulcerans and M. marinum, and the sequence of the 3′ end was identical to that of the African type except for a single nucleotide substitution at position 1317. This mutation in M. ulcerans was recently discovered in BU patients living in the same geographic area. Various genotyping methods confirmed that strain 00-1441 has a profile identical to that of the predominant African type. Strain 00-1441 produced severe progressive infection and disease in mouse footpads with involvement of bone. Conclusion Strain 00-1441 represents the first genetically and phenotypically identified strain of M. ulcerans isolated in pure culture from the environment. This isolation supports the concept that the agent of BU is a human pathogen with an environmental niche.


Infection and Immunity | 2007

Mycolactone-Mediated Inhibition of Tumor Necrosis Factor Production by Macrophages Infected with Mycobacterium ulcerans Has Implications for the Control of Infection

Egídio Torrado; Sarojini Adusumilli; Alexandra G. Fraga; Pamela L. C. Small; António G. Castro; Jorge Pedrosa

ABSTRACT The pathogenicity of Mycobacterium ulcerans, the agent of Buruli ulcer, depends on the cytotoxic exotoxin mycolactone. Little is known about the immune response to this pathogen. Following the demonstration of an intracellular growth phase in the life cycle of M. ulcerans, we investigated the production of tumor necrosis factor (TNF) induced by intramacrophage bacilli of diverse toxigenesis/virulence, as well as the biological relevance of TNF during M. ulcerans experimental infections. Our data show that murine bone marrow-derived macrophages infected with mycolactone-negative strains of M. ulcerans (nonvirulent) produce high amounts of TNF, while macrophages infected with mycolactone-positive strains of intermediate or high virulence produce intermediate or low amounts of TNF, respectively. These results are in accordance with the finding that TNF receptor P55-deficient (TNF-P55 KO) mice are not more susceptible than wild-type mice to infection by the highly virulent strains but are more susceptible to nonvirulent and intermediately virulent strains, demonstrating that TNF is required to control the proliferation of these strains in animals experimentally infected by M. ulcerans. We also show that mycolactone produced by intramacrophage M. ulcerans bacilli inhibits, in a dose-dependent manner, but does not abrogate, the production of macrophage inflammatory protein 2, which is consistent with the persistent inflammatory responses observed in experimentally infected mice.


Infection and Immunity | 2007

Evidence for an Intramacrophage Growth Phase of Mycobacterium ulcerans

Egídio Torrado; Alexandra G. Fraga; António G. Castro; Pieter Stragier; Wayne M. Meyers; Françoise Portaels; Manuel T. Silva; Jorge Pedrosa

ABSTRACT Mycobacterium ulcerans is the etiologic agent of Buruli ulcer (BU), an emerging tropical skin disease. Virulent M. ulcerans secretes mycolactone, a cytotoxic exotoxin with a key pathogenic role. M. ulcerans in biopsy specimens has been described as an extracellular bacillus. In vitro assays have suggested a mycolactone-induced inhibition of M. ulcerans uptake by macrophages in which its proliferation has not been demonstrated. Therefore, and uniquely for a mycobacterium, M. ulcerans has been classified as an extracellular pathogen. In specimens from patients and in mouse footpad lesions, extracellular bacilli were concentrated in central necrotic acellular areas; however, we found bacilli within macrophages in surrounding inflammatory infiltrates. We demonstrated that mycolactone-producing M. ulcerans isolates are efficiently phagocytosed by murine macrophages, indicating that the extracellular location of M. ulcerans is not a result of inhibition of phagocytosis. Additionally, we found that M. ulcerans multiplies inside cultured mouse macrophages when low multiplicities of infection are used to prevent early mycolactone-associated cytotoxicity. Following the proliferation phase within macrophages, M. ulcerans induces the lysis of the infected host cells, becoming extracellular. Our data show that M. ulcerans, like M. tuberculosis, is an intracellular parasite with phases of intramacrophage and extracellular multiplication. The occurrence of an intramacrophage phase is in accordance with the development of cell-mediated and delayed-type hypersensitivity responses in BU patients.


Infection and Immunity | 2005

Infection with Mycobacterium ulcerans Induces Persistent Inflammatory Responses in Mice

Martinha S. Oliveira; Alexandra G. Fraga; Egídio Torrado; António G. Castro; João P. Pereira; Adhemar Longatto Filho; Fernanda Milanezi; Fernando Schmitt; Wayne M. Meyers; Françoise Portaels; Manuel T. Silva; Jorge Pedrosa

ABSTRACT Buruli ulcer (BU) is a devastating, necrotizing, tropical skin disease caused by infections with Mycobacterium ulcerans. In contrast to other mycobacterioses, BU has been associated with minimal or absent inflammation. However, here we show that in the mouse M. ulcerans induces persistent inflammatory responses with virulence-dependent patterns. Mycolactone-positive, cytotoxic strains are virulent for mice and multiply progressively, inducing both early and persistent acute inflammatory responses. The cytotoxicity of these strains leads to progressive destruction of the inflammatory infiltrates by postapoptotic secondary necrosis, generating necrotic acellular areas with extracellular bacilli released by the lysis of infected phagocytes. The necrotic areas, always surrounded by acute inflammatory infiltrates, expand through the progressive invasion of healthy tissues around the initial necrotic lesions by bacteria and by newly recruited acute inflammatory cells. Our observations show that the lack of inflammatory infiltrates in the extensive areas of necrosis seen in advanced infections results from the destruction of continuously produced inflammatory infiltrates and not from M. ulcerans-induced local or systemic immunosuppression. Whether this is the mechanism behind the predominance of minimal or absent inflammatory responses in BU biopsies remains to be elucidated.


PLOS Neglected Tropical Diseases | 2010

Response to treatment in a prospective cohort of patients with large ulcerated lesions suspected to be Buruli Ulcer (Mycobacterium ulcerans disease)

Kapay Kibadi; Marleen Boelaert; Alexandra G. Fraga; Makanzu Kayinua; Adhemar Longatto-Filho; Jean-Bedel Masamba Minuku; Jean-Baptiste Mputu-Yamba; Jean-Jacques Muyembe-Tamfum; Jorge Pedrosa; Jean-Jacques Roux; Wayne M. Meyers; Françoise Portaels

Background The World Health Organization (WHO) advises treatment of Mycobacterium ulcerans disease, also called “Buruli ulcer” (BU), with a combination of the antibiotics rifampicin and streptomycin (R+S), whether followed by surgery or not. In endemic areas, a clinical case definition is recommended. We evaluated the effectiveness of this strategy in a series of patients with large ulcers of ≥10 cm in longest diameter in a rural health zone of the Democratic Republic of Congo (DRC). Methods A cohort of 92 patients with large ulcerated lesions suspected to be BU was enrolled between October 2006 and September 2007 and treated according to WHO recommendations. The following microbiologic data were obtained: Ziehl-Neelsen (ZN) stained smear, culture and PCR. Histopathology was performed on a sub-sample. Directly observed treatment with R+S was administered daily for 12 weeks and surgery was performed after 4 weeks. Patients were followed up for two years after treatment. Findings Out of 92 treated patients, 61 tested positive for M. ulcerans by PCR. PCR negative patients had better clinical improvement than PCR positive patients after 4 weeks of antibiotics (54.8% versus 14.8%). For PCR positive patients, the outcome after 4 weeks of antibiotic treatment was related to the ZN positivity at the start. Deterioration of the ulcers was observed in 87.8% (36/41) of the ZN positive and in 12.2% (5/41) of the ZN negative patients. Deterioration due to paradoxical reaction seemed unlikely. After surgery and an additional 8 weeks of antibiotics, 98.4% of PCR positive patients and 83.3% of PCR negative patients were considered cured. The overall recurrence rate was very low (1.1%). Interpretation Positive predictive value of the WHO clinical case definition was low. Low relapse rate confirms the efficacy of antibiotics. However, the need for and the best time for surgery for large Buruli ulcers requires clarification. We recommend confirmation by ZN stain at the rural health centers, since surgical intervention without delay may be necessary on the ZN positive cases to avoid progression of the disease. PCR negative patients were most likely not BU cases. Correct diagnosis and specific management of these non-BU ulcers cases are urgently needed.


Journal of Clinical Microbiology | 2009

Fine-Needle Aspiration, an Efficient Sampling Technique for Bacteriological Diagnosis of Nonulcerative Buruli Ulcer

Miriam Eddyani; Alexandra G. Fraga; Fernando Schmitt; Cécile Uwizeye; Krista Fissette; Christian Johnson; Julia Aguiar; Ghislain Emmanuel Sopoh; Yves Thierry Barogui; Wayne M. Meyers; Jorge Pedrosa; Françoise Portaels

ABSTRACT Invasive punch or incisional skin biopsy specimens are currently employed for the bacteriological confirmation of the clinical diagnosis of Buruli ulcer (BU), a cutaneous infectious disease caused by Mycobacterium ulcerans. The efficacy of fine-needle aspirates (FNA) using fine-gauge needles (23G by 25 mm) for the laboratory confirmation of BU was compared with that of skin tissue fragments obtained in parallel by excision or punch biopsy. In three BU treatment centers in Benin, both types of diagnostic material were obtained from 33 clinically suspected cases of BU and subjected to the same laboratory analyses: i.e., direct smear examination, IS2404 PCR, and in vitro culture. Twenty-three patients, demonstrating 17 ulcerative and 6 nonulcerative lesions, were positive by at least two tests and were therefore confirmed to have active BU. A total of 68 aspirates and 68 parallel tissue specimens were available from these confirmed patients. When comparing the sensitivities of the three confirmation tests between FNA and tissue specimens, the latter yielded more positive results, but only for PCR was this significant. When only nonulcerative BU lesions were considered, however, the sensitivities of the confirmation tests using FNA and tissue specimens were not significantly different. Our results show that the minimally invasive FNA technique offers enough sensitivity to be used for the diagnosis of BU in nonulcerative lesions.


PLOS Neglected Tropical Diseases | 2013

Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model.

Gabriela Trigo; Teresa G. Martins; Alexandra G. Fraga; Adhemar Longatto-Filho; António G. Castro; Joana Azeredo; Jorge Pedrosa

Background Buruli Ulcer (BU) is a neglected, necrotizing skin disease caused by Mycobacterium ulcerans. Currently, there is no vaccine against M. ulcerans infection. Although the World Health Organization recommends a combination of rifampicin and streptomycin for the treatment of BU, clinical management of advanced stages is still based on the surgical resection of infected skin. The use of bacteriophages for the control of bacterial infections has been considered as an alternative or to be used in association with antibiotherapy. Additionally, the mycobacteriophage D29 has previously been shown to display lytic activity against M. ulcerans isolates. Methodology/Principal findings We used the mouse footpad model of M. ulcerans infection to evaluate the therapeutic efficacy of treatment with mycobacteriophage D29. Analyses of macroscopic lesions, bacterial burdens, histology and cytokine production were performed in both M. ulcerans-infected footpads and draining lymph nodes (DLN). We have demonstrated that a single subcutaneous injection of the mycobacteriophage D29, administered 33 days after bacterial challenge, was sufficient to decrease pathology and to prevent ulceration. This protection resulted in a significant reduction of M. ulcerans numbers accompanied by an increase of cytokine levels (including IFN-γ), both in footpads and DLN. Additionally, mycobacteriophage D29 treatment induced a cellular infiltrate of a lymphocytic/macrophagic profile. Conclusions/Significance Our observations demonstrate the potential of phage therapy against M. ulcerans infection, paving the way for future studies aiming at the development of novel phage-related therapeutic approaches against BU.


Current Topics in Medicinal Chemistry | 2008

Developments on drug delivery systems for the treatment of mycobacterial infections.

Maria Manuela Gaspar; Andrea Cruz; Alexandra G. Fraga; António G. Castro; M.M. Cruz; Jorge Pedrosa

The clinical management of tuberculosis and other mycobacterial diseases with antimycobacterial chemotherapy remains a difficult task. The classical treatment protocols are long-lasting; the drugs reach mycobacteria-infected macrophages in low amounts and/or do not persist long enough to develop the desired antimycobacterial effect; and the available agents induce severe toxic effects. Nanotechnology has provided a huge improvement to pharmacology through the designing of drug delivery systems able to target phagocytic cells infected by intracellular pathogens, such as mycobacteria. Liposomes and nanoparticles of polymeric nature represent two of the most efficient drug carrier systems that after in vivo administration are endocytosed by phagocytic cells and then release the carried agents into these cells. This article reviews the relevant publications describing the effectiveness of the association of antimycobacterial agents with liposomes or nanoparticles for the treatment of mycobacterioses, particularly for Mycobacterium tuberculosis and M. avium infections. The increased therapeutic index of antimycobacterial drugs; the reduction of dosing frequency; and the improvement of solubility of hydrophobic agents, allowing the administration of higher doses, have been demonstrated in experimental infections. These advantages may lead to new therapeutic protocols that will improve patient compliance and, consequently, lead to a more successful control of mycobacterial infections. The potential therapeutic advantages resulting from the use of non-invasive administration routes for nanoparticulate systems are also discussed.

Collaboration


Dive into the Alexandra G. Fraga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel T. Silva

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar

Françoise Portaels

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne M. Meyers

Armed Forces Institute of Pathology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge