Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Cruz is active.

Publication


Featured researches published by Andrea Cruz.


Journal of Immunology | 2006

Cutting Edge: IFN-γ Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection

Andrea Cruz; Shabaana A. Khader; Egídio Torrado; Alexandra G. Fraga; John E. Pearl; Jorge Pedrosa; Andrea M. Cooper; António G. Castro

T cell responses are important to the control of infection but are deleterious if not regulated. IFN-γ-deficient mice infected with mycobacteria exhibit enhanced accumulation of activated effector T cells and neutrophils within granulomatous lesions. These cells do not control bacterial growth and compromise the integrity of the infected tissue. We show that IFN-γ-deficient mice have increased numbers of IL-17-producing T cells following infection with Mycobacterium bovis bacille Calmette Guérin. Furthermore, exogenous IFN-γ increases IL-12 and decreases IL-23 production by bacille Calmette Guérin-infected bone marrow-derived dendritic cells and reduces the frequency of IL-17-producing T cells induced by these bone marrow-derived dendritic cells. These data support the hypothesis that, during mycobacterial infection, both IFN-γ- and IL-17-producing T cells are induced, but that IFN-γ serves to limit the IL-17-producing T cell population. This counterregulation pathway may be an important factor in limiting mycobacterially associated immune-mediated pathology.


Journal of Experimental Medicine | 2010

Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis

Andrea Cruz; Alexandra G. Fraga; Jeffrey J. Fountain; Javier Rangel-Moreno; Egídio Torrado; Margarida Saraiva; Daniela Maria Ramos Pereira; Troy D. Randall; Jorge Pedrosa; Andrea M. Cooper; António G. Castro

Infection usually leads to the development of acquired immune responses associated with clearance or control of the infecting organism. However, if not adequately regulated, immune-mediated pathology can result. Tuberculosis is a worldwide threat, and development of an effective vaccine requires that the protective immune response to Mycobacterium tuberculosis (Mtb) be dissected from the pathological immune response. This distinction is particularly important if new vaccines are to be delivered to Mtb-exposed individuals, as repeated antigenic exposure can lead to pathological complications. Using a model wherein mice are vaccinated with bacille Calmette-Guérin after Mtb infection, we show that repeated vaccination results in increased IL-17, tumor necrosis factor, IL-6, and MIP-2 expression, influx of granulocytes/neutrophils, and lung tissue damage. This pathological response is abrogated in mice deficient in the gene encoding IL-23p19 or in the presence of IL-17–blocking antibody. This finding that repeated exposure to mycobacterial antigen promotes enhanced IL-17–dependent pathological consequences has important implications for the design of effective vaccines against Mtb.


Cancer Research | 2004

Role of the Human ST6GalNAc-I and ST6GalNAc-II in the Synthesis of the Cancer-Associated Sialyl-Tn Antigen

Nuno T. Marcos; Sandra Pinho; Catarina Grandela; Andrea Cruz; Bénédicte Samyn-Petit; Anne Harduin-Lepers; Raquel Almeida; Filipe Silva; Vanessa A. Morais; Júlia Costa; Jan Kihlberg; Henrik Clausen; Celso A. Reis

The Sialyl-Tn antigen (Neu5Acα2–6GalNAc-O-Ser/Thr) is highly expressed in several human carcinomas and is associated with carcinoma aggressiveness and poor prognosis. We characterized two human sialyltransferases, CMP-Neu5Ac:GalNAc-R α2,6-sialyltransferase (ST6GalNAc)-I and ST6GalNAc-II, that are candidate enzymes for Sialyl-Tn synthases. We expressed soluble recombinant hST6GalNAc-I and hST6GalNAc-II and characterized the substrate specificity of both enzymes toward a panel of glycopeptides, glycoproteins, and other synthetic glycoconjugates. The recombinant ST6GalNAc-I and ST6GalNAc-II showed similar substrate specificity toward glycoproteins and GalNAcα-O-Ser/Thr glycopeptides, such as glycopeptides derived from the MUC2 mucin and the HIVgp120. We also observed that the amino acid sequence of the acceptor glycopeptide contributes to the in vitro substrate specificity of both enzymes. We additionally established a gastric cell line, MKN45, stably transfected with the full length of either ST6GalNAc-I or ST6GalNAc-II and evaluated the carbohydrate antigens expression profile induced by each enzyme. MKN45 transfected with ST6GalNAc-I showed high expression of Sialyl-Tn, whereas MKN45 transfected with ST6GalNAc-II showed the biosynthesis of the Sialyl-6T structure [Galβ1–3 (Neu5Acα2–6)GalNAc-O-Ser/Thr]. In conclusion, although both enzymes show similar in vitro activities when Tn antigen alone is available, whenever both Tn and T antigens are present, ST6GalNAc-I acts preferentially on Tn antigen, whereas the ST6GalNAc-II acts preferentially on T antigen. Our results show that ST6GalNAc-I is the major Sialyl-Tn synthase and strongly support the hypothesis that the expression of the Sialyl-Tn antigen in cancer cells is due to ST6GalNAc-I activity.


Current Topics in Medicinal Chemistry | 2008

Developments on drug delivery systems for the treatment of mycobacterial infections.

Maria Manuela Gaspar; Andrea Cruz; Alexandra G. Fraga; António G. Castro; M.M. Cruz; Jorge Pedrosa

The clinical management of tuberculosis and other mycobacterial diseases with antimycobacterial chemotherapy remains a difficult task. The classical treatment protocols are long-lasting; the drugs reach mycobacteria-infected macrophages in low amounts and/or do not persist long enough to develop the desired antimycobacterial effect; and the available agents induce severe toxic effects. Nanotechnology has provided a huge improvement to pharmacology through the designing of drug delivery systems able to target phagocytic cells infected by intracellular pathogens, such as mycobacteria. Liposomes and nanoparticles of polymeric nature represent two of the most efficient drug carrier systems that after in vivo administration are endocytosed by phagocytic cells and then release the carried agents into these cells. This article reviews the relevant publications describing the effectiveness of the association of antimycobacterial agents with liposomes or nanoparticles for the treatment of mycobacterioses, particularly for Mycobacterium tuberculosis and M. avium infections. The increased therapeutic index of antimycobacterial drugs; the reduction of dosing frequency; and the improvement of solubility of hydrophobic agents, allowing the administration of higher doses, have been demonstrated in experimental infections. These advantages may lead to new therapeutic protocols that will improve patient compliance and, consequently, lead to a more successful control of mycobacterial infections. The potential therapeutic advantages resulting from the use of non-invasive administration routes for nanoparticulate systems are also discussed.


Nucleus | 2014

Implications of polyadenylation in health and disease

Curinha A; Oliveira Braz S; Isabel Pereira-Castro; Andrea Cruz; Alexandra Moreira

Polyadenylation is the RNA processing step that completes the maturation of nearly all eukaryotic mRNAs. It is a two-step nuclear process that involves an endonucleolytic cleavage of the pre-mRNA at the 3′-end and the polymerization of a polyadenosine (polyA) tail, which is fundamental for mRNA stability, nuclear export and efficient translation during development. The core molecular machinery responsible for the definition of a polyA site includes several recognition, cleavage and polyadenylation factors that identify and act on a given polyA signal present in a pre-mRNA, usually an AAUAAA hexamer or similar sequence. This mechanism is tightly regulated by other cis-acting elements and trans-acting factors, and its misregulation can cause inefficient gene expression and may ultimately lead to disease. The majority of genes generate multiple mRNAs as a result of alternative polyadenylation in the 3′-untranslated region. The variable lengths of the 3′ untranslated regions created by alternative polyadenylation are a recognizable target for differential regulation and clearly affect the fate of the transcript, ultimately modulating the expression of the gene. Over the past few years, several studies have highlighted the importance of polyadenylation and alternative polyadenylation in gene expression and their impact in a variety of physiological conditions, as well as in several illnesses. Abnormalities in the 3′-end processing mechanisms thus represent a common feature among many oncological, immunological, neurological and hematological disorders, but slight imbalances can lead to the natural establishment of a specific cellular state. This review addresses the key steps of polyadenylation and alternative polyadenylation in different cellular conditions and diseases focusing on the molecular effectors that ensure a faultless pre-mRNA 3′ end formation.


PLOS ONE | 2013

Mycobacterium tuberculosis Strains Are Differentially Recognized by TLRs with an Impact on the Immune Response

Jenny Carmona; Andrea Cruz; Lúcia Moreira-Teixeira; Carole Sousa; Jeremy Nicolas Carvalho Sousa; Nuno S. Osório; Ana Laura Saraiva; Stefan B. Svenson; Gunilla Källenius; Jorge Pedrosa; Fernando Rodrigues; António G. Castro; Margarida Saraiva

Tuberculosis associates with a wide spectrum of disease outcomes. The Beijing (Bj) lineage of Mycobacterium tuberculosis (Mtb) is suggested to be more virulent than other Mtb lineages and prone to elicit non-protective immune responses. However, highly heterogeneous immune responses were reported upon infection of innate immune cells with Bj strains or stimulation with their glycolipids. Using both in vitro and in vivo mouse models of infection, we here report that the molecular mechanism for this heterogeneity may be related to distinct TLR activations. Among this Mtb lineage, we found strains that preferentially activate TLR2, and others that also activate TLR4. Recognition of Mtb strains by TLR4 resulted in a distinct cytokine profile in vitro and in vivo, with specific production of type I IFN. We also uncover a novel protective role for TLR4 activation in vivo. Thus, our findings contribute to the knowledge of the molecular basis underlying how host innate immune cells handle different Mtb strains, in particular the intricate host-pathogen interaction with strains of the Mtb Bj lineage.


International Immunology | 2011

TLR2 deficiency by compromising p19 (IL-23) expression limits Th 17 cell responses to Mycobacterium tuberculosis

Maria Teixeira-Coelho; Andrea Cruz; Jenny Carmona; Carole Sousa; Daniela Ramos-Pereira; Ana Laura Saraiva; Marc Veldhoen; Jorge Pedrosa; António G. Castro; Margarida Saraiva

CD4(+) T(h)1 cells producing IFN-γ are of extreme importance in controlling infections by Mycobacterium tuberculosis both in mice and in men. In addition to IFN-γ-producing T cells, IL-17-producing T cells (T(h)17) have been observed during mycobacterial infections. Nevertheless, their contribution for the host immune response to mycobacteria as well as the signals triggering M. tuberculosis -specific T(h)17 cell differentiation and maintenance are not fully understood. We show that signaling via Toll-like receptor (TLR) 2 has a major impact on the regulation of p19 (IL-23) expression in response to M. tuberculosis and therefore on the establishment of T(h)17 cell responses to M. tuberculosis infection. Diminished T(h)17 responses in the lung of M. tuberculosis -infected TLR2-deficient animals were not caused by defective cell differentiation in the draining lymph node (LN) but rather by reduced maintenance at the site of infection. Consistent with the decreased numbers of T(h)17 cells in the lungs of infected TLR2-deficient animals, we observed reduced expression of CXCL9, CXCL10 and CXCL11, chemokines involved in recall responses to M. tuberculosis. Our data provides insights into the TLR2 role in infection with M. tuberculosis, with implications in pathophysiology of the disease and vaccine design.


Infection and Immunity | 2011

Mycobacterium ulcerans Triggers T-Cell Immunity followed by Local and Regional but Not Systemic Immunosuppression

Alexandra G. Fraga; Andrea Cruz; Teresa G. Martins; Egídio Torrado; Margarida Saraiva; Daniela Maria Ramos Pereira; Wayne M. Meyers; Françoise Portaels; Manuel T. Silva; António G. Castro; Jorge Pedrosa

ABSTRACT Buruli ulcer is a neglected infectious disease caused by Mycobacterium ulcerans and is characterized by necrotic cutaneous lesions induced by the exotoxin mycolactone. Despite evidence of Th1-mediated protective immunity, M. ulcerans infection has been associated with systemic immunosuppression. We show that early during mouse infection with either mycolactone-positive or negative strains, pathogen-specific gamma interferon (IFN-γ)-producing T cells developed in the draining lymph node (DLN). CD4+ cells migrated to the infection foci, but progressive infection with virulent M. ulcerans led to the local depletion of recruited cells. Moreover, dissemination of virulent M. ulcerans to the DLN was accompanied by extensive DLN apoptotic cytopathology, leading to depletion of CD4+ T cells and abrogation of IFN-γ expression. Advanced footpad infection with virulent M. ulcerans did not induce increased susceptibility to systemic coinfection by Listeria monocytogenes. These results show that infection with M. ulcerans efficiently triggers a mycobacterium-specific T-cell response in the DLN and that progression of infection with highly virulent M. ulcerans leads to a local and regional suppression of that immune response, but without induction of systemic immunosuppression. These results suggest that prophylactic and/or therapeutic interventions to prevent dissemination of M. ulcerans to DLN during the early phase of infection would contribute for the maintenance of protective immunity and disease control.


Vaccine | 2015

BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4+IL-17+TNF+IL-2+ T cells

Andrea Cruz; Egídio Torrado; Jenny Carmona; Alexandra G. Fraga; Patrício Costa; Fernando Rodrigues; Rui Appelberg; Margarida Correia-Neves; Andrea M. Cooper; Margarida Saraiva; Jorge Pedrosa; António G. Castro

Mycobacterium bovis Bacille Calmette-Guerin (BCG) is the only vaccine in use to prevent Mycobacterium tuberculosis (Mtb) infection. Here we analyzed the protective efficacy of BCG against Mtb challenges 21 or 120 days after vaccination. Only after 120 days post-vaccination were mice able to efficiently induce early Mtb growth arrest and maintain long-lasting control of Mtb. This protection correlated with the accumulation of CD4(+) T cells expressing IL-17(+)TNF(+)IL-2(+). In contrast, mice challenged with Mtb 21 days after BCG vaccination exhibited only a mild and transient protection, associated with the accumulation of CD4(+) T cells that were mostly IFN-γ(+)TNF(+) and to a lesser extent IFN-γ(+)TNF(+)IL-2(+). These data suggest that the memory response generated by BCG vaccination is functionally distinct depending upon the temporal proximity to BCG vaccination. Understanding how these responses are generated and maintained is critical for the development of novel vaccination strategies against tuberculosis.


Scientific Reports | 2017

A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles

Flávia Sousa; Andrea Cruz; Pedro Fonte; Inês Mendes Pinto; Maria Teresa Neves-Petersen; Bruno Sarmento

Monoclonal antibodies have deserved a remarkable interest for more than 40 years as a vital tool for the treatment of various diseases. Still, there is a raising interest to develop advanced monoclonal antibody delivery systems able to tailor pharmacokinetics. Bevacizumab is a humanized immunoglobulin IgG1 used in antiangiogenic therapies due to its capacity to inhibit the interaction between vascular endothelial growth factor and its receptor. However, bevacizumab-based antiangiogenic therapy is not always effective due to poor treatment compliance associated to multiples administrations and drug resistance. In this work, we show a promising strategy of encapsulating bevacizumab to protect and deliver it, in a controlled manner, increasing the time between administrations and formulation shelf-life. Nanoencapsulation of bevacizumab represents a significant advance for selective antiangiogenic therapies since extracellular, cell surface and intracellular targets can be reached. The present study shows that bevacizumab-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles does not impair its native-like structure after encapsulation and fully retain the bioactivity, making this nanosystem a new paradigm for the improvement of angiogenic therapy.

Collaboration


Dive into the Andrea Cruz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inês Mendes Pinto

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge