Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra Koumoutsi is active.

Publication


Featured researches published by Alexandra Koumoutsi.


Nature Biotechnology | 2007

Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42.

Xiao Hua Chen; Alexandra Koumoutsi; Romy Scholz; Andreas Eisenreich; Kathrin Schneider; Isabelle Heinemeyer; Burkhard Morgenstern; Björn Voss; Wolfgang R. Hess; Oleg N. Reva; Helmut Junge; Birgit Voigt; Peter R. Jungblut; Joachim Vater; Roderich D. Süssmuth; Heiko Liesegang; Axel Strittmatter; Gerhard Gottschalk; Rainer Borriss

Bacillus amyloliquefaciens FZB42 is a Gram-positive, plant-associated bacterium, which stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. Its 3,918-kb genome, containing an estimated 3,693 protein-coding sequences, lacks extended phage insertions, which occur ubiquitously in the closely related Bacillus subtilis 168 genome. The B. amyloliquefaciens FZB42 genome reveals an unexpected potential to produce secondary metabolites, including the polyketides bacillaene and difficidin. More than 8.5% of the genome is devoted to synthesizing antibiotics and siderophores by pathways not involving ribosomes. Besides five gene clusters, known from B. subtilis to mediate nonribosomal synthesis of secondary metabolites, we identified four giant gene clusters absent in B. subtilis 168. The pks2 gene cluster encodes the components to synthesize the macrolactin core skeleton.


Journal of Bacteriology | 2004

Structural and Functional Characterization of Gene Clusters Directing Nonribosomal Synthesis of Bioactive Cyclic Lipopeptides in Bacillus amyloliquefaciens Strain FZB42

Alexandra Koumoutsi; Xiao-Hua Chen; Anke Henne; Heiko Liesegang; Gabriele Hitzeroth; Peter Franke; Joachim Vater; Rainer Borriss

The environmental strain Bacillus amyloliquefaciens FZB42 promotes plant growth and suppresses plant pathogenic organisms present in the rhizosphere. We sampled sequenced the genome of FZB42 and identified 2,947 genes with >50% identity on the amino acid level to the corresponding genes of Bacillus subtilis 168. Six large gene clusters encoding nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) occupied 7.5% of the whole genome. Two of the PKS and one of the NRPS encoding gene clusters were unique insertions in the FZB42 genome and are not present in B. subtilis 168. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed expression of the antibiotic lipopeptide products surfactin, fengycin, and bacillomycin D. The fengycin (fen) and the surfactin (srf) operons were organized and located as in B. subtilis 168. A large 37.2-kb antibiotic DNA island containing the bmy gene cluster was attributed to the biosynthesis of bacillomycin D. The bmy island was found inserted close to the fen operon. The responsibility of the bmy, fen, and srf gene clusters for the production of the corresponding secondary metabolites was demonstrated by cassette mutagenesis, which led to the loss of the ability to produce these peptides. Although these single mutants still largely retained their ability to control fungal spread, a double mutant lacking both bacillomycin D and fengycin was heavily impaired in its ability to inhibit growth of phytopathogenic fungi, suggesting that both lipopeptides act in a synergistic manner.


Journal of Biotechnology | 2009

Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens

Xiao Hua Chen; Alexandra Koumoutsi; Romy Scholz; Kathrin Schneider; Joachim Vater; Roderich D. Süssmuth; Jörn Piel; Rainer Borriss

The genome of plant-associated Bacillus amyloliquefaciens FZB42 harbors an array of giant gene clusters involved in synthesis of lipopeptides and polyketides with antifungal, antibacterial and nematocidal activity. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, were shown to direct synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron-siderophore bacillibactin. In addition, one gene cluster encoding enzymes involved in synthesis and export of the antibacterial dipeptide bacilysin is also functional in FZB42. Three gene clusters, mln, bae, and dfn, with a total size of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. In total, FZB42 dedicates about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites. On the contrary, genes involved in ribosome-dependent synthesis of lantibiotics and other peptides are scarce. Apart from two incomplete gene clusters directing immunity against mersacidin and subtilin, only one peptide-like compound has been detected in the culture fluid that inhibits the growth of B. subtilis lacking the alternative sigma factor W.


Journal of Bacteriology | 2006

Structural and Functional Characterization of Three Polyketide Synthase Gene Clusters in Bacillus amyloliquefaciens FZB 42

Xiao-Hua Chen; Joachim Vater; Jörn Piel; Peter Franke; Romy Scholz; Kathrin Schneider; Alexandra Koumoutsi; Gabriele Hitzeroth; Nicolas Grammel; Axel Strittmatter; Gerhard Gottschalk; Roderich D. Süssmuth; Rainer Borriss

Although bacterial polyketides are of considerable biomedical interest, the molecular biology of polyketide biosynthesis in Bacillus spp., one of the richest bacterial sources of bioactive natural products, remains largely unexplored. Here we assign for the first time complete polyketide synthase (PKS) gene clusters to Bacillus antibiotics. Three giant modular PKS systems of the trans-acyltransferase type were identified in Bacillus amyloliquefaciens FZB 42. One of them, pks1, is an ortholog of the pksX operon with a previously unknown function in the sequenced model strain Bacillus subtilis 168, while the pks2 and pks3 clusters are novel gene clusters. Cassette mutagenesis combined with advanced mass spectrometric techniques such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry revealed that the pks1 (bae) and pks3 (dif) gene clusters encode the biosynthesis of the polyene antibiotics bacillaene and difficidin or oxydifficidin, respectively. In addition, B. subtilis OKB105 (pheA sfp(0)), a transformant of the B. subtilis 168 derivative JH642, was shown to produce bacillaene, demonstrating that the pksX gene cluster directs the synthesis of that polyketide. The GenBank accession numbers for gene clusters pks1(bae), pks2, and pks3(dif) are AJ 634060.2, AJ 6340601.2, and AJ 6340602.2, respectively.


Journal of Molecular Microbiology and Biotechnology | 2009

More than Anticipated – Production of Antibiotics and Other Secondary Metabolites by Bacillus amyloliquefaciens FZB42

Xiao-Hua Chen; Alexandra Koumoutsi; Romy Scholz; Rainer Borriss

The genome of environmental Bacillus amyloliquefaciens FZB42 harbors numerous gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, direct non-ribosomal synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron siderophore bacillibactin. Bacillomycin and fengycin were shown to act against phytopathogenic fungi in a synergistic manner. Three gene clusters, mln, bae, and dif, with a total length of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. Both, non-ribosomal synthesis of cyclic lipopeptides and synthesis of polyketides are dependent on the presence of a functional sfp gene product, 4′-phosphopantetheinyl transferase, as evidenced by knockout mutation of the sfp gene resulting in complete absence of all those eight compounds. In addition, here we present evidence that a gene cluster encoding enzymes involved in synthesis and export of the antibacterial acting dipeptide bacilysin is also functional in FZB42. In summary, environmental FZB42 devoted about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites useful to cope with other competing microorganisms present in the plant rhizosphere.


Applied and Environmental Microbiology | 2007

DegU and YczE Positively Regulate the Synthesis of Bacillomycin D by Bacillus amyloliquefaciens Strain FZB42

Alexandra Koumoutsi; Xiao-Hua Chen; Joachim Vater; Rainer Borriss

ABSTRACT Environmental strain Bacillus amyloliquefaciens FZB42 differs from the domesticated model organism of the same genus, Bacillus subtilis 168, in its ability to promote plant growth and suppress plant-pathogenic organisms present in the rhizosphere. This behavior is exerted mainly through the production of several nonribosomal cyclic lipopeptides and polyketides, which exhibit a broad range of action against phytopathogenic bacteria, fungi, and nematodes. Here, we provide evidence that the synthesis of the main antifungal agent of B. amyloliquefaciens FZB42, bacillomycin D, is regulated in multiple layers. Expression of the bacillomycin D operon (bmy) is dependent on a single σA-dependent promoter, Pbmy and is favored in its natural host by the small regulatory protein DegQ. The global regulators DegU and ComA are required for the full transcriptional activation of bmy. DegU retains a key role since it binds directly to two sites located upstream of the bacillomycin D promoter. Moreover, both DegU and a transmembrane protein of unknown function, YczE, act on a later level of gene expression, exerting their posttranscriptional effects in a hitherto-unknown manner.


Archive | 2004

Sequence for the bacillomycin d synthesis in bacillus amyloliquefaciens fzb42

Rainer Borriss; Alexandra Koumoutsi; Joachim Vater; Helmut Junge; Birgit Krebs


Archive | 2006

Sequenzen für die Synthese antibakteriell wirkender Polyketide

Rainer Borriss; Alexandra Koumoutsi; Joachim Vater; Chen Xiaohua


Archive | 2005

Sequences for the synthesis of antibacterial polyketides

Rainer Borriss; Chen Xiaohua; Alexandra Koumoutsi; Joachim Vater


Archive | 2005

Sequence de synthese de polyketides a action antibacterienne

Rainer Borriss; Chen Xiaohua; Alexandra Koumoutsi; Joachim Vater

Collaboration


Dive into the Alexandra Koumoutsi's collaboration.

Top Co-Authors

Avatar

Rainer Borriss

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Joachim Vater

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Romy Scholz

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Xiao-Hua Chen

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Kathrin Schneider

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Roderich D. Süssmuth

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriele Hitzeroth

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge