Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra L. Bey is active.

Publication


Featured researches published by Alexandra L. Bey.


PLOS Genetics | 2007

The role of AtMUS81 in interference-insensitive crossovers in A. thaliana.

Luke E. Berchowitz; Kirk E. Francis; Alexandra L. Bey; Gregory P. Copenhaver

MUS81 is conserved among plants, animals, and fungi and is known to be involved in mitotic DNA damage repair and meiotic recombination. Here we present a functional characterization of the Arabidopsis thaliana homolog AtMUS81, which has a role in both mitotic and meiotic cells. The AtMUS81 transcript is produced in all tissues, but is elevated greater than 9-fold in the anthers and its levels are increased in response to gamma radiation and methyl methanesulfonate treatment. An Atmus81 transfer-DNA insertion mutant shows increased sensitivity to a wide range of DNA-damaging agents, confirming its role in mitotically proliferating cells. To examine its role in meiosis, we employed a pollen tetrad–based visual assay. Data from genetic intervals on Chromosomes 1 and 3 show that Atmus81 mutants have a moderate decrease in meiotic recombination. Importantly, measurements of recombination in a pair of adjacent intervals on Chromosome 5 demonstrate that the remaining crossovers in Atmus81 are interference sensitive, and that interference levels in the Atmus81 mutant are significantly greater than those in wild type. These data are consistent with the hypothesis that AtMUS81 is involved in a secondary subset of meiotic crossovers that are interference insensitive.


American Journal of Pathology | 2009

Epithelial Integrity Is Maintained by a Matriptase-Dependent Proteolytic Pathway

Karin List; Peter Kosa; Roman Szabo; Alexandra L. Bey; Chao Becky Wang; Alfredo A. Molinolo; Thomas H. Bugge

A pericellular proteolytic pathway initiated by the transmembrane serine protease matriptase plays a critical role in the terminal differentiation of epidermal tissues. Matriptase is constitutively expressed in multiple other epithelia, suggesting a putative role of this membrane serine protease in general epithelial homeostasis. Here we generated mice with conditional deletion of the St14 gene, encoding matriptase, and show that matriptase indeed is essential for the maintenance of multiple types of epithelia in the mouse. Thus, embryonic or postnatal ablation of St14 in epithelial tissues of diverse origin and function caused severe organ dysfunction, which was often associated with increased permeability, loss of tight junction function, mislocation of tight junction-associated proteins, and generalized epithelial demise. The study reveals that the homeostasis of multiple simple and stratified epithelia is matriptase-dependent, and provides an important animal model for the exploration of this membrane serine protease in a range of physiological and pathological processes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis

Kirk E. Francis; Sandy Y. Lam; Benjamin D. Harrison; Alexandra L. Bey; Luke E. Berchowitz; Gregory P. Copenhaver

Recombination, in the form of cross-overs (COs) and gene conversion (GC), is a highly conserved feature of meiosis from fungi to mammals. Recombination helps ensure chromosome segregation and promotes allelic diversity. Lesions in the recombination machinery are often catastrophic for meiosis, resulting in sterility. We have developed a visual assay capable of detecting Cos and GCs and measuring CO interference in Arabidopsis thaliana. This flexible assay utilizes transgene constructs encoding pollen-expressed fluorescent proteins of three different colors in the qrt1 mutant background. By observing the segregation of the fluorescent alleles in 92,489 pollen tetrads, we demonstrate (i) a correlation between developmental position and CO frequency, (ii) a temperature dependence for CO frequency, (iii) the ability to detect meiotic GC events, and (iv) the ability to rapidly assess CO interference.


Nature Genetics | 2010

Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome

Katiuchia Uzzun Sales; Andrius Masedunskas; Alexandra L. Bey; Amber L. Rasmussen; Roberto Weigert; Karin List; Roman Szabo; Paul A. Overbeek; Thomas H. Bugge

Deficiency in the serine protease inhibitor LEKTI is the etiological origin of Netherton syndrome, which causes detachment of the stratum corneum and chronic inflammation. Here we show that the membrane protease matriptase initiates Netherton syndrome in a LEKTI-deficient mouse model by premature activation of a pro-kallikrein cascade. Auto-activation of pro-inflammatory pro-kallikrein-related peptidases that are associated with stratum corneum detachment was either low or undetectable, but they were efficiently activated by matriptase. Ablation of matriptase from LEKTI-deficient mice dampened inflammation, eliminated aberrant protease activity, prevented detachment of the stratum corneum, and improved the barrier function of the epidermis. These results uncover a pathogenic matriptase–pro-kallikrein pathway that could operate in several human skin and inflammatory diseases.


Nature Communications | 2016

Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism.

Xiaoming Wang; Alexandra L. Bey; Brittany M. Katz; Alexandra Badea; Nam Soo Kim; Lisa K. David; Lara J. Duffney; Sunil Kumar; Stephen D. Mague; Samuel W. Hulbert; Nisha Dutta; Volodya Y. Hayrapetyan; Chunxiu Yu; Erin Gaidis; Shengli Zhao; Jin Dong Ding; Qiong Xu; Leeyup Chung; Ramona M. Rodriguiz; Fan Wang; Richard J. Weinberg; William C. Wetsel; Kafui Dzirasa; Henry H. Yin; Yong-hui Jiang

Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4–22 (Δe4–22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4–22−/− mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs.


Molecular Autism | 2014

Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice.

Xiaoming Wang; Qiong Xu; Alexandra L. Bey; Yoonji Lee; Yong-hui Jiang

BackgroundConsiderable clinical heterogeneity has been well documented amongst individuals with autism spectrum disorders (ASD). However, little is known about the biological mechanisms underlying phenotypic diversity. Genetic studies have established a strong causal relationship between ASD and molecular defects in the SHANK3 gene. Individuals with various defects of SHANK3 display considerable clinical heterogeneity. Different lines of Shank3 mutant mice with deletions of different portions of coding exons have been reported recently. Variable synaptic and behavioral phenotypes have been reported in these mice, which makes the interpretations for these data complicated without the full knowledge of the complexity of the Shank3 transcript structure.MethodsWe systematically examined alternative splicing and isoform-specific expression of Shank3 across different brain regions and developmental stages by regular RT-PCR, quantitative real time RT-PCR (q-PCR), and western blot. With these techniques, we also investigated the effects of neuronal activity and epigenetic modulation on alternative splicing and isoform-specific expression of Shank3. We explored the localization and influence on dendritic spine development of different Shank3 isoforms in cultured hippocampal neurons by cellular imaging.ResultsThe Shank3 gene displayed an extensive array of mRNA and protein isoforms resulting from the combination of multiple intragenic promoters and extensive alternative splicing of coding exons in the mouse brain. The isoform-specific expression and alternative splicing of Shank3 were brain-region/cell-type specific, developmentally regulated, activity-dependent, and involved epigenetic regulation. Different subcellular distribution and differential effects on dendritic spine morphology were observed for different Shank3 isoforms.ConclusionsOur results indicate a complex transcriptional regulation of Shank3 in mouse brains. Our analysis of select Shank3 isoforms in cultured neurons suggests that different Shank3 isoforms have distinct functions. Therefore, the different types of SHANK3 mutations found in patients with ASD and different exonic deletions of Shank3 in mutant mice are predicted to disrupt selective isoforms and result in distinct dysfunctions at the synapse with possible differential effects on behavior. Our comprehensive data on Shank3 transcriptional regulation thus provides an essential molecular framework to understand the phenotypic diversity in SHANK3 causing ASD and Shank3 mutant mice.


Blood | 2010

Selective abrogation of the uPA-uPAR interaction in vivo reveals a novel role in suppression of fibrin-associated inflammation

Brian M. Connolly; Eun Young Choi; Henrik Gårdsvoll; Alexandra L. Bey; Brooke M. Currie; Triantafyllos Chavakis; Shihui Liu; Alfredo A. Molinolo; Stephen H. Leppla; Thomas H. Bugge

The urokinase plasminogen activator receptor (uPAR) has emerged as a potential regulator of cell adhesion, cell migration, proliferation, differentiation, and cell survival in multiple physiologic and pathologic contexts. The urokinase plasminogen activator (uPA) was the first identified ligand for uPAR, but elucidation of the specific functions of the uPA-uPAR interaction in vivo has been difficult because uPA has important physiologic functions that are independent of binding to uPAR and because uPAR engages multiple ligands. Here, we developed a new mouse strain (Plau(GFDhu/GFDhu)) in which the interaction between endogenous uPA and uPAR is selectively abrogated, whereas other functions of both the protease and its receptor are retained. Specifically, we introduced 4 amino acid substitutions into the growth factor domain (GFD) of uPA that abrogate uPAR binding while preserving the overall structure of the domain. Analysis of Plau(GFDhu/GFDhu) mice revealed an unanticipated role of the uPA-uPAR interaction in suppressing inflammation secondary to fibrin deposition. In contrast, leukocyte recruitment and tissue regeneration were unaffected by the loss of uPA binding to uPAR. This study identifies a principal in vivo role of the uPA-uPAR interaction in cell-associated fibrinolysis critical for suppression of fibrin accumulation and fibrin-associated inflammation and provides a valuable model for further exploration of this multifunctional receptor.


PLOS ONE | 2011

Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT.

Katiuchia Uzzun Sales; John P. Hobson; Rebecca A. Wagenaar-Miller; Roman Szabo; Amber L. Rasmussen; Alexandra L. Bey; Maham F. Shah; Alfredo A. Molinolo; Thomas H. Bugge

Genome mining at the turn of the millennium uncovered a new family of type II transmembrane serine proteases (TTSPs) that comprises 17 members in humans and 19 in mice. TTSPs phylogenetically belong to one of four subfamilies: matriptase, hepsin/TMPRSS, corin and HAT/DESC. Whereas a wealth of information now has been gathered as to the physiological functions of members of the hepsin/TMPRSS, matriptase, and corin subfamilies of TTSPs, comparatively little is known about the functions of the HAT/DESC subfamily of proteases. Here we perform a combined expression and functional analysis of this TTSP subfamily. We show that the five human and seven murine HAT/DESC proteases are coordinately expressed, suggesting a level of functional redundancy. We also perform a comprehensive phenotypic analysis of mice deficient in two of the most widely expressed HAT/DESC proteases, TMPRSS11A and HAT, and show that the two proteases are dispensable for development, health, and long-term survival in the absence of external challenges or additional genetic deficits. Our comprehensive expression analysis and generation of TMPRSS11A- and HAT-deficient mutant mouse strains provide a valuable resource for the scientific community for further exploration of the HAT/DESC subfamily proteases in physiological and pathological processes.


Neuron | 2016

SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons

Qingjian Han; Yong Ho Kim; Xiaoming Wang; Di Liu; Zhi-Jun Zhang; Alexandra L. Bey; Mark Lay; Wonseok Chang; Temugin Berta; Yan Zhang; Yong-hui Jiang; Ru-Rong Ji

Abnormal pain sensitivity is commonly associated with autism spectrum disorders (ASDs) and affects the life quality of ASD individuals. SHANK3 deficiency was implicated in ASD and pain dysregulation. Here, we report functional expression of SHANK3 in mouse dorsal root ganglion (DRG) sensory neurons and spinal cord presynaptic terminals. Homozygous and heterozygous Shank3 complete knockout (Δe4-22) results in impaired heat hyperalgesia in inflammatory and neuropathic pain. Specific deletion of Shank3 in Nav1.8-expressing sensory neurons also impairs heat hyperalgesia in homozygous and heterozygous mice. SHANK3 interacts with transient receptor potential subtype V1 (TRPV1) via Proline-rich region and regulates TRPV1 surface expression. Furthermore, capsaicin-induced spontaneous pain, inward currents in DRG neurons, and synaptic currents in spinal cord neurons are all reduced after Shank3 haploinsufficiency. Finally, partial knockdown of SHANK3 expression in human DRG neurons abrogates TRPV1 function. Our findings reveal a peripheral mechanism of SHANK3, which may underlie pain deficits in SHANK3-related ASDs.


Current protocols in pharmacology | 2014

Overview of Mouse Models of Autism Spectrum Disorders

Alexandra L. Bey; Yong-hui Jiang

This overview describes many well characterized mouse models of autism spectrum disorders (ASDs). Mouse models considered here were selected because they are examples of genetically engineered models where human genetic evidence supports a causative relationship between the targeted mutation and the behavioral phenotype. As the ASD diagnosis is based primarily on behavioral evaluations in humans in the domains of social interaction, communication, and restricted interests, the murine phenotypes analogous to human autistic behaviors are highlighted for the different models and behaviors. Although genetically engineered mouse models with good construct and face validity are valuable for identifying and defining underlying pathophysiological mechanisms and for developing potential therapeutic interventions for the human condition, the translational value of various rodent behavioral assays remains a subject of debate. Significant challenges associated with modeling ASDs in rodents because of the clinical and molecular heterogeneity that characterize this disorder are also considered. Curr. Protoc. Pharmacol. 66:5.66.1‐5.66.26.

Collaboration


Dive into the Alexandra L. Bey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas H. Bugge

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory P. Copenhaver

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirk E. Francis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke E. Berchowitz

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge