Alexandra Nunes
Children's Hospital Oakland Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra Nunes.
Journal of Bacteriology | 2006
João Paulo Gomes; Alexandra Nunes; William J. Bruno; Maria José Borrego; Carlos Florindo; Deborah Dean
Chlamydia trachomatis is an intracellular bacterium responsible for ocular, respiratory, and sexually transmitted diseases. The genome contains a nine-member polymorphic membrane protein (Pmp) family unique to members of the order Chlamydiales. Genomic and molecular analyses were performed for the entire pmp gene family for the 18 reference serological variants (serovars) and genovariant Ja to identify specific gene and protein regions that differentiate chlamydial disease groups. The mean genetic distance among all serovars varied from 0.1% for pmpA to 7.0% for pmpF. Lymphogranuloma venereum (LGV) serovars were the most closely related for the pmp genes and were also the most divergent, compared to ocular and non-LGV urogenital disease groups. Phylogenetic reconstructions showed that for six of nine pmp genes (not pmpA, pmpD, or pmpE), the serovars clustered based on tissue tropism. The most globally successful serovars, E and F, clustered distantly from the urogenital group for five pmp genes. These pmp genes may confer a biologic advantage that may facilitate infection and transmission for E and F. Surprisingly, serovar Da clustered with the ocular group from pmpE to pmpI, which are located together in the chromosome, providing statistically significant evidence for intergenomic recombination and acquisition of a genetic composition that could hypothetically expand the host cell range of serovar Da. We also identified distinct domains for pmpE, pmpF, and pmpH where substitutions were concentrated and associated with a specific disease group. Thus, our data suggest a possible structural or functional role that may vary among pmp genes in promoting antigenic polymorphisms and/or diverse adhesions-receptors that may be involved in immune evasion and differential tissue tropism.
PLOS ONE | 2007
Alexandra Nunes; João Paulo Gomes; Sally Mead; Carlos Florindo; Helena Correia; Maria José Borrego; Deborah Dean
Background Chlamydia trachomatis, an obligate intracellular pathogen, is a leading worldwide cause of ocular and urogenital diseases. Advances have been made in our understanding of the nine-member polymorphic membrane protein (Pmp) gene (pmp) family of C. trachomatis. However, there is only limited information on their biologic role, especially for biological variants (biovar) and clinical strains. Methodology/Principal Findings We evaluated expression for pmps throughout development for reference strains E/Bour and L2/434, representing different biovars, and for clinical E and L2 strains. Immunoreactivity of patient sera to recombinant (r)Pmps was also determined. All pmps were expressed at two hours. pmpA had the lowest expression but was up-regulated at 12 h for all strains, indicating involvement in reticulate body development. For pmpD, expression peaked at 36 h. Additionally, 57.7% of sera from infected and 0% from uninfected adolescents were reactive to rPmpD (p = 0.001), suggesting a role in immunogenicity. pmpF had the highest expression levels for all clinical strains and L2/434 with differential expression of the pmpFE operon for the same strains. Sera were nonreactive to rPmpF despite immunoreactivity to rMOMP and rPmpD, suggesting that PmpF is not associated with humoral immune responses. pmpFE sequences for clinical strains were identical to those of the respective reference strains. We identified the putative pmpFE promoter, which was, surprisingly, 100% conserved for all strains. Analyses of ribosomal binding sites, RNase E, and hairpin structures suggested complex regulatory mechanism(s) for this >6 Kb operon. Conclusions/Significance The dissimilar expression of the same pmp for different C. trachomatis strains may explain different strain-specific needs and phenotypic distinctions. This is further supported by the differential immunoreactivity to rPmpD and rPmpF of sera from patients infected with different strains. Furthermore, clinical E strains did not correlate with the E reference strain at the gene expression level, reinforcing the need for expansive studies of clinical strains.
PLOS ONE | 2010
Alexandra Nunes; Paulo Nogueira; Maria José Borrego; João Paulo Gomes
Background Chlamydia trachomatis is one of the most disseminated human pathogens, for which no vaccine is available yet. Understanding the impact of the host pressure on pathogen antigens is crucial, but so far it was only assessed for highly-restricted geographic areas. We aimed to evaluate the evolutionary picture of the chlamydial key antigen (MOMP), which is one of the leading multi-subunit vaccine candidates, in a worldwide basis. Methodology/Principal Findings Using genetics, molecular evolution methods and mathematical modelling, we analyzed all MOMP sequences reported worldwide, composed by 5026 strains from 33 geographic regions of five continents. Overall, 35.9% of variants were detected. The evolutionary pattern of MOMP amino acid gains/losses was found to differ from the remaining chromosome, reflecting the demanding constraints of this porin, adhesin and dominant antigen. Amino acid changes were 4.3-fold more frequent in host-interacting domains (P<10−12), specifically within B-cell epitopes (P<10−5), where 25% of them are at fixation (P<10−5). According to the typical pathogen-host arms race, this rampant B-cell antigenic variation likely represents neutralization escape mutants, as some mutations were previously shown to abrogate neutralization of chlamydial infectivity in vitro. In contrast, T-cell clusters of diverse HLA specificities are under purifying selection, suggesting a strategy that may lead to immune subversion. Moreover, several silent mutations are at fixation, generating preferential codons that may influence expression, and may also reflect recombination-derived ‘hitchhiking-effect’ from favourable nonsilent changes. Interestingly, the most prevalent C. trachomatis genotypes, E and F, showed a mutation rate 22.3-fold lower than that of the remainder (P<10−20), suggesting more fitted antigenic profiles. Conclusions/Significance Globally, the adaptive evolution of the C. trachomatis dominant antigen is likely driven by its complex pathogenesis-related function and reflects distinct evolutionary antigenic scenarios that may benefit the pathogen, and thus should be taking into account in the development of a MOMP-based vaccine.
Journal of Bacteriology | 2009
Alexandra Nunes; Maria José Borrego; Baltazar Nunes; Carlos Florindo; João Paulo Gomes
Chlamydia trachomatis is the trachoma agent and causes most bacterial sexually transmitted infections worldwide. Its major outer membrane protein (MOMP) is a well-known porin and adhesin and is the dominant antigen. So far, investigation of MOMP variability has been focused mainly on molecular epidemiological surveys. In contrast, we aimed to evaluate the impact of the host pressure on this key antigen by analyzing its evolutionary dynamics in 795 isolates from urogenital infections, taking into account the MOMP secondary structure and the sizes/positions of antigenic regions. One-third of the specimens showed a mutational drift from the corresponding genotype, where approximately 42% of the mutations had never been described. Amino acid alterations were sixfold more frequent within B-cell epitopes than in the remaining protein (P = 0.027), and some mutations were also found within or close to T-cell antigenic clusters. Interestingly, the two most ecologically successful genotypes, E and F, showed a mutation rate 60.3-fold lower than that of the other genotypes (P < 10(-8)), suggesting that their efficacy may be the result of a better fitness in dealing with the host immune system rather than of specific virulence factors. Furthermore, the variability exhibited by some genetic variants involved residues that are known to play a critical role during the membrane mechanical movements, contributing to a more stable and flexible porin conformation, which suggests some plasticity to deal with environmental pressure. Globally, these MOMP mutational trends yielded no mosaic structures or important phylogenetic changes, but instead yielded point mutations on specific protein domains, which may enhance pathogens infectivity, persistence, and transmission.
Infection, Genetics and Evolution | 2013
Vítor Borges; Rita Ferreira; Alexandra Nunes; Mafalda Sousa-Uva; Miguel Abreu; Maria José Borrego; João Paulo Gomes
It is assumed that bacterial strains maintained in the laboratory for long time shape their genome in a different fashion from the nature-circulating strains. Here, we analyzed the impact of long-term in vitro propagation on the genome of the obligate intracellular pathogen Chlamydia trachomatis. We fully-sequenced the genome of a historical prototype strain (L2/434/Bu) and a clinical isolate (E/CS88), before and after one-year of serial in vitro passaging (up to 3500 bacterial generations). We observed a slow adaptation of C. trachomatis to the in vitro environment, which was essentially governed by four mutations for L2/434/Bu and solely one mutation for E/CS88, corresponding to estimated mutation rates from 3.84 × 10(-10) to 1.10 × 10(-9) mutations per base pair per generation. In a speculative basis, the mutations likely conferred selective advantage as: (i) mathematical modeling showed that selective advantage is mandatory for frequency increase of a mutated clone; (ii) transversions and non-synonymous mutations were overrepresented; (iii) two non-synonymous mutations affected the genes CTL0084 and CTL0610, encoding a putative transferase and a protein likely implicated in transcription regulation respectively, which are families known to be highly prone to undergone laboratory-derived advantageous mutations in other bacteria; and (iv) the mutation for E/CS88 is located likely in the regulatory region of a virulence gene (CT115/incD) believed to play a role in subverting the host cell machinery. Nevertheless, we found no significant differences in the growth rate, plasmid load, and attachment/entry rate, between strains before and after their long-term laboratory propagation. Of note, from the mixture of clones in E/CS88 initial population, an inactivating mutation in the virulence gene CT135 evolved to 100% prevalence, unequivocally indicating that this gene is superfluous for C. trachomatis survival in vitro. Globally, C. trachomatis revealed a slow in vitro adaptation that only modestly modifies the in vivo-derived genomic evolutionary landscape.
Sexually Transmitted Diseases | 2009
João Paulo Gomes; Alexandra Nunes; Carlos Florindo; Maria Arminda Ferreira; Irene Santo; Jacinta Azevedo; Maria José Borrego
Background: Several European countries identified an ongoing LGV outbreak, particularly among men who have sex with men (MSM). In Portugal, no particular surveillance measures were launched. Nonetheless, circulating LGV strains could eventually be detected through the routine Chlamydia trachomatis ompA genotyping procedure held in the Portuguese National Institute of Health (NIH). Methods: During 2007, 178 Chlamydia trachomatis specimens were genotyped through amplification and automated-sequencing of ompA. Sequences of 891bp (nt142-nt1032) were aligned with currently available chlamydial sequences from GenBank to identify the corresponding genotype. Results: Eight Chlamydia trachomatis specimens matched LGV-genotypes (7 “L2” and 1 mixed E+L2 undetermined variant). These specimens were identified in samples collected from 4 women and 4 men. One HIV(+) MSM presented LGV related symptoms, while the other infected persons were either asymptomatic or presented no clear LGV symptoms. All samples revealed ompA sequences different from the L2/434 reference strain and from the L2b/144276, which is the most frequently described genotype during the recent LGV outbreak. Conclusions: The detection of 7 LGV specimens during 2007 in contrast with their absence over the previous 5 years. The LGV infected individuals do not seem to be related to any sexual networks of MSM, contrarily to those described in other European countries. Moreover, all Lisbon LGV specimens revealed unusual ompA sequences that differentiate them from the currently reported LGV infections in Europe. The results of the current study further justify an attentive surveillance of LGV strains infecting different populations and the study of their relation with clinical aspects and disease patterns.
Infection, Genetics and Evolution | 2013
Alexandra Nunes; Maria José Borrego; João Paulo Gomes
The obligate intracellular pathogen Chlamydia trachomatis is the causative agent of the blinding trachoma and the worlds leading cause of bacterial sexually transmitted infections. Despite aggressive antibacterial control measures, C. trachomatis infections have been increasing, constituting a serious public health concern due to its morbidity and socioeconomic burden. Still, very little is known about the molecular basis underlying the phenotypic disparities observed among C. trachomatis serovars in terms of tissue tropism (ocular conjunctiva, epithelial-genitalia and lymph nodes), virulence (disease outcomes) and ecological success. This is in part due to the inexistence of straightforward tools to genetically manipulate Chlamydiae and host cell-free growth systems, hampering the elucidation of the biological role of loci. The recent release of tenths of full-genome C. trachomatis sequences depict a strains clustering scenario reflecting the organ/cell-type that they preferentially infect. However, the high degree of genomic conservation implies that few genetic features are involved in phenotypic dissimilarities. The purpose of this review is to gather the most relevant data dispersed throughout the literature concerning the genotypic evidences that support niche-specific phenotypes. This review focus on chromosomal dynamics phenomena like recombination and point-mutations, essentially involving outer and inclusion membrane proteins, type III secretion effectors, and hypothetical proteins with unknown function. The scrutiny of C. trachomatis loci involved in tissue tropism, pathogenesis and ecological success is crucial for the development of disease-specific prophylaxis.
Nature microbiology | 2017
M. R. Pinto; Vítor Borges; Minia Antelo; Miguel Pinheiro; Alexandra Nunes; Jacinta Azevedo; Maria José Borrego; Joana Mendonça; Dina Carpinteiro; Luís Vieira; João Paulo Gomes
Insights into the genomic adaptive traits of Treponema pallidum, the causative bacterium of syphilis, have long been hampered due to the absence of in vitro culture models and the constraints associated with its propagation in rabbits. Here, we have bypassed the culture bottleneck by means of a targeted strategy never applied to uncultivable bacterial human pathogens to directly capture whole-genome T. pallidum data in the context of human infection. This strategy has unveiled a scenario of discreet T. pallidum interstrain single-nucleotide-polymorphism-based microevolution, contrasting with a rampant within-patient genetic heterogeneity mainly targeting multiple phase-variable loci and a major antigen-coding gene (tprK). TprK demonstrated remarkable variability and redundancy, intra- and interpatient, suggesting ongoing parallel adaptive diversification during human infection. Some bacterial functions (for example, flagella- and chemotaxis-associated) were systematically targeted by both inter- and intrastrain single nucleotide polymorphisms, as well as by ongoing within-patient phase variation events. Finally, patient-derived genomes possess mutations targeting a penicillin-binding protein coding gene (mrcA) that had never been reported, unveiling it as a candidate target to investigate the impact on the susceptibility to penicillin. Our findings decode the major genetic mechanisms by which T. pallidum promotes immune evasion and survival, and demonstrate the exceptional power of characterizing evolving pathogen subpopulations during human infection.
G3: Genes, Genomes, Genetics | 2012
Rita Ferreira; Vítor Borges; Alexandra Nunes; Paulo Nogueira; Maria José Borrego; João Paulo Gomes
The knowledge of the frequency and relative weight of mutation and recombination events in evolution is essential for understanding how microorganisms reach fitted phenotypes. Traditionally, these evolutionary parameters have been inferred by using data from multilocus sequence typing (MLST), which is known to have yielded conflicting results. In the near future, these estimations will certainly be performed by computational analyses of full-genome sequences. However, it is not known whether this approach will yield accurate results as bacterial genomes exhibit heterogeneous representation of loci categories, and it is not clear how loci nature impacts such estimations. Therefore, we assessed how mutation and recombination inferences are shaped by loci with different genetic features, using the bacterium Chlamydia trachomatis as the study model. We found that loci assigning a high number of alleles and positively selected genes yielded nonconvergent estimates and incongruent phylogenies and thus are more prone to confound algorithms. Unexpectedly, for the model under evaluation, housekeeping genes and noncoding regions shaped estimations in a similar manner, which points to a nonrandom role of the latter in C. trachomatis evolution. Although the present results relate to a specific bacterium, we speculate that microbe-specific genomic architectures (such as coding capacity, polymorphism dispersion, and fraction of positively selected loci) may differentially buffer the effect of the confounding factors when estimating recombination and mutation rates and, thus, influence the accuracy of using full-genome sequences for such purpose. This putative bias associated with in silico inferences should be taken into account when discussing the results obtained by the analyses of full-genome sequences, in which the “one size fits all” approach may not be applicable.
Scientific Reports | 2016
Vítor Borges; Alexandra Nunes; Daniel A. Sampaio; Luís Vieira; Jorge Machado; Maria João Simões; Paulo Gonçalves; João Paulo Gomes
A first strong evidence of person-to-person transmission of Legionnaires’ Disease (LD) was recently reported. Here, we characterize the genetic backbone of this case-related Legionella pneumophila strain (“PtVFX/2014”), which also caused a large outbreak of LD. PtVFX/2014 is phylogenetically divergent from the most worldwide studied outbreak-associated L. pneumophila subspecies pneumophila serogroup 1 strains. In fact, this strain is also from serogroup 1, but belongs to the L. pneumophila subspecies fraseri. Its genomic mosaic backbone reveals eight horizontally transferred regions encompassing genes, for instance, involved in lipopolysaccharide biosynthesis or encoding virulence-associated Dot/Icm type IVB secretion system (T4BSS) substrates. PtVFX/2014 also inherited a rare ~65 kb pathogenicity island carrying virulence factors and detoxifying enzymes believed to contribute to the emergence of best-fitted strains in water reservoirs and in human macrophages, as well as a inter-species transferred (from L. oakridgensis) ~37.5 kb genomic island (harboring a lvh/lvr T4ASS cluster) that had never been found intact within L. pneumophila species. PtVFX/2014 encodes another lvh/lvr cluster near to CRISPR-associated genes, which may boost L. pneumophila transition from an environmental bacterium to a human pathogen. Overall, this unique genomic make-up may impact PtVFX/2014 ability to adapt to diverse environments, and, ultimately, to be transmitted and cause human disease.