Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra P. Marques is active.

Publication


Featured researches published by Alexandra P. Marques.


Journal of the Royal Society Interface | 2007

Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends

João F. Mano; Gabriel A. Silva; Helena S. Azevedo; Patrícia B. Malafaya; Rui A. Sousa; Simone Santos Silva; Luciano F. Boesel; Joaquim M. Oliveira; T. C. Santos; Alexandra P. Marques; Nuno M. Neves; Rui L. Reis

The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications.


Biomaterials | 2002

The biocompatibility of novel starch-based polymers and composites: in vitro studies.

Alexandra P. Marques; Rui L. Reis; John A. Hunt

Studies with biodegradable starch-based polymers have recently demonstrated that these materials have a range of properties. which make them suitable for use in several biomedical applications, ranging from bone plates and screws to drug delivery carriers and tissue engineering scaffolds. The aim of this study was to screen the cytotoxicity and evaluate starch-based polymers and composites as potential biomaterials. The biocompatibility of two different blends of corn-starch, starch ethylene vinyl alcohol (SEVA-C) and starch cellulose acetate (SCA) and their respective composites with hydroxyapatite (HA) was assessed by cytotoxicity and cell adhesion tests. The MTT assay was performed with the extracts of the materials in order to evaluate the short-term effect of the degradation products. The cell morphology of L929 mouse fibroblast cell line was also analysed after direct contact with polymers and composites for different time periods and the number of cells adhered to the surface of the polymers was determined by quantification of the cytosolic lactate dehydrogenase (LDH) activity. Both types of starch-based polymers exhibit a cytocompatibility that might allow for their use as biomaterials. SEVA-C blends were found to be the less cytotoxic for the tested cell line, although cells adhere better to SCA surface. The cytotoxicity test also revealed that SCA and SEVA-C composites have a similar response to the one obtained for SCA polymer. Scanning electron microscopy (SEM) analysis showed that cells were much more spread on the SCA polymer and LDH measurements showed a higher number of cells on this surface.


Advanced Materials | 2013

Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells.

Akhilesh K. Gaharwar; Silvia M. Mihaila; Archana Swami; Alpesh Patel; Shilpa Sant; Rui L. Reis; Alexandra P. Marques; Manuela E. Gomes; Ali Khademhosseini

Novel silicate nanoplatelets that induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of any osteoinductive factor are reported. The presence of the silicate triggers a set of events that follows the temporal pattern of osteogenic differentiation. These findings underscore the potential applications of these silicate nanoplatelets in designing bioactive scaffolds for musculoskeletal tissue engineering.


Small | 2009

Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance

Albino Martins; Elisabete D. Pinho; Susana Faria; Iva Pashkuleva; Alexandra P. Marques; Rui L. Reis; Nuno M. Neves

A critical aspect in the development of biomaterials is the optimization of their surface properties to achieve an adequate cell response. In the present work, electrospun polycaprolactone nanofiber meshes (NFMs) are treated by radio-frequency (RF) plasma using different gases (Ar or O(2)), power (20 or 30 W), and exposure time (5 or 10 min). Morphological and roughness analysis show topographical changes on the plasma-treated NFMs. X-ray photoelectron spectroscopy (XPS) results indicate an increment of the oxygen-containing groups, mainly --OH and --C==O, at the plasma-treated surfaces. Accordingly, the glycerol contact angle results demonstrate a decrease in the hydrophobicity of plasma-treated meshes, particularly in the O(2)-treated ones. Three model cell lines (fibroblasts, chondrocytes, and osteoblasts) are used to study the effect of plasma treatments over the morphology, cell adhesion, and proliferation. A plasma treatment with O(2) and one with Ar are found to be the most successful for all the studied cell types. The influence of hydrophilicity and roughness of those NFMs on their biological performance is discussed. Despite the often claimed morphological similarity of NFMs to natural extracellular matrixes, their surface properties contribute substantially to the cellular performance and therefore those should be optimized.


Journal of Tissue Engineering and Regenerative Medicine | 2009

Hierarchical starch-based fibrous scaffold for bone tissue engineering applications

Albino Martins; Sangwon Chung; A. J. Pedro; Rui A. Sousa; Alexandra P. Marques; Rui L. Reis; Nuno M. Neves

Fibrous structures mimicking the morphology of the natural extracellular matrix are considered promising scaffolds for tissue engineering. This work aims to develop a novel hierarchical starch‐based scaffold. Such scaffolds were obtained by a combination of starch–polycaprolactone micro‐ and polycaprolactone nano‐motifs, respectively produced by rapid prototyping (RP) and electrospinning techniques. Scanning electron microscopy (SEM) and micro‐computed tomography analysis showed the successful fabrication of a multilayer scaffold composed of parallel aligned microfibres in a grid‐like arrangement, intercalated by a mesh‐like structure with randomly distributed nanofibres (NFM). Human osteoblast‐like cells were dynamically seeded on the scaffolds, using spinner flasks, and cultured for 7 days under static conditions. SEM analysis showed predominant cell attachment and spreading on the nanofibre meshes, which enhanced cell retention at the bulk of the composed/hierarchical scaffolds. A significant increment in cell proliferation and osteoblastic activity, assessed by alkaline phosphatase quantification, was observed on the hierarchical fibrous scaffolds. These results support our hypothesis that the integration of nanoscale fibres into 3D rapid prototype scaffolds substantially improves their biological performance in bone tissue‐engineering strategies. Copyright


Biomaterials | 2010

Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality.

Albino Martins; Ana Rita C. Duarte; Susana Faria; Alexandra P. Marques; Rui L. Reis; Nuno M. Neves

Electrospun structures were proposed as scaffolds owing to their morphological and structural similarities with the extracellular matrix found in many native tissues. These fibrous structures were also proposed as drug release systems by exploiting the direct dependence of the release rate of a drug on the surface area. An osteogenic differentiation factor, dexamethasone (DEX), was incorporated into electrospun polycaprolactone (PCL) nanofibers at different concentrations (5, 10, 15 and 20 wt.% polymer), in a single-step process. The DEX incorporated into the polymeric carrier is in amorphous state, as determined by DSC, and does not influence the typical nanofibers morphology. In vitro drug release studies demonstrated that the dexamethasone release was sustained over a period of 15 days. The bioactivity of the released dexamethasone was assessed by cultivating human bone marrow mesenchymal stem cells (hBMSCs) on 15 wt.% DEX-loaded PCL NFMs, under dexamethasone-absent osteogenic differentiation medium formulation. An increased concentration of alkaline phosphatase and deposition of a mineralized matrix was observed. Phenotypic and genotypic expression of osteoblastic-specific markers corroborates the osteogenic activity of the loaded growth/differentiation factor. Overall data suggests that the electrospun biodegradable nanofibers can be used as carriers for the sustained release of growth/differentiation factors relevant for bone tissue engineering strategies.


Journal of Materials Chemistry | 2007

Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells

Paula M. López-Pérez; Alexandra P. Marques; Ricardo M. P. da Silva; Iva Pashkuleva; Rui L. Reis

The surface of solvent cast chitosan membranes was modified using a two-step procedure. Oxygen plasma treatment was used at the first activation step followed by vinyl monomer graft polymerization. Two monomers were used in order to compare the influence of different functional groups on cell adhesion and proliferation; acrylic acid (AA) was used to introduce carboxyl groups and vinyl sulfonic acid (VSA) was used as a source of sulfonic groups. The surface chemistry/energy changes were characterized by means of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR-ATR), and contact angle measurements. Additionally, alterations in the surface morphology were investigated by scanning electron microscopy (SEM). XPS analyses confirmed the polymer grafting on the surface; an S2s peak appears in the VSA survey spectrum and an O–CO peak emerges in the C1s high resolution spectrum after AA grafting. Moreover, contact angle measurements showed an increment in the values of the surface energy polar and Lewis base components for all treated samples, confirming the introduction of additional polar groups by the modification processes. FTIR-ATR spectra showed no significant difference between treated and original materials. These results confirmed that only the very top (a few angstroms) surface layer, but not the bulk of the material, was modified. The effect of modification on the adhesion and proliferation of osteoblast-like cells was studied on a preliminary basis. Direct contact tests were performed using a human osteosarcoma cell line (SaOs-2). Cell morphology (optical microscopy and SEM) and cell viability (MTS test) were evaluated for untreated and surface modified membranes. The results revealed that both plasma treatment, and the presence of sulfonic groups on the surface of chitosan membranes, improve SaOs-2 adhesion and proliferation when compared to untreated or AA-grafted membranes. This effect was strongly related to the polar and Lewis basic components of the total surface energy.


Journal of Tissue Engineering and Regenerative Medicine | 2013

Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs

Rogério P. Pirraco; Rui L. Reis; Alexandra P. Marques

Heterotypic cell interactions are essential for the homeostasis of bone tissue, in particular the widely studied interaction between osteoblasts and osteoclasts. Closely related with osteoclasts are monocytes/macrophages. These have been shown to produce osteogenic factors, e.g. BMP‐2, which plays a key role in bone metabolism. However, the mechanisms through which monocytes/macrophages interact with osteoblasts are still elusive. The aim of this work was to assess the influence of human peripheral blood monocytes/macrophages over the early osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in the presence of dexamethasone‐supplemented medium. The co‐cultures were performed using porous transwells that allowed the interaction between both cell types through the production of paracrine factors. The potential effect of BMP‐2 produced by monocytes/macrophages was addressed by adding an anti‐BMP‐2 antibody to the co‐cultures. hBMSCs cultured in the presence of monocytes/macrophages had a higher proliferation rate than hBMSCs monocultures. The quantification of early osteogenic marker alkaline phosphatase (ALP) revealed higher activity of this enzyme in cells in the co‐culture throughout the time of culture. Both of these effects were inhibited by adding an anti‐BMP‐2 antibody to the cultures. Moreover, qRT–PCR for osteocalcin and osteopontin transcripts showed overexpression of both markers. Once again, the effect of monocytes/macrophages over hBMSC osteogenic differentiation was completely inhibited in the co‐cultures by blocking BMP‐2. The present report confirmed that monocytes/macrophages produce BMP‐2, which promotes osteogenic differentiation and proliferation of hBMSCs cumulatively to dexamethasone‐supplemented medium. This potentially implies that monocyte/macrophages play a stronger role in bone homeostasis than so far supposed. Copyright


Advanced Healthcare Materials | 2013

Photocrosslinkable Kappa‐Carrageenan Hydrogels for Tissue Engineering Applications

Silvia M. Mihaila; Akhilesh K. Gaharwar; Rui L. Reis; Alexandra P. Marques; Manuela E. Gomes; Ali Khademhosseini

Kappa carrageenan (κ-CA) is a natural-origin polymer that closely mimics the glycosaminoglycan structure, one of the most important constituents of native tissues extracellular matrix. Previously, it has been shown that κ-CA can crosslink via ionic interactions rendering strong, but brittle hydrogels. In this study, we introduce photocrosslinkable methacrylate moieties on the κ-CA backbone to create physically and chemically crosslinked hydrogels highlighting their use in the context of tissue engineering. By varying the degree of methacrylation, the effect on hydrogel crosslinking was investigated in terms of hydration degree, dissolution profiles, morphological, mechanical, and rheological properties. Furthermore, the viability of fibroblast cells cultured inside the photocrosslinked hydrogels was investigated. The combination of chemical and physical crosslinking procedures enables the formation of hydrogels with highly versatile physical and chemical properties, while maintaining the viability of encapsulated cells. To our best knowledge, this is the first study reporting the synthesis of photocrosslinkable κ-CA with controllable compressive moduli, swelling ratios and pore size distributions. Moreover, by micromolding approaches, spatially controlled geometries and cell distribution patterns could be obtained, thus enabling the development of cell-material platforms that can be applied and tailored to a broad range of tissue engineering strategies.


Acta Biomaterialia | 2013

An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine

Simone Santos Silva; Elena Geta Popa; Manuela E. Gomes; M. T. Cerqueira; Alexandra P. Marques; Sofia G. Caridade; Pilar Teixeira; Cláudia Sousa; João F. Mano; Rui L. Reis

A significant number of therapeutics derived from natural polymers and plants have been developed to replace or to be used in conjunction with existing dressing products. The use of the therapeutic properties of aloe vera could be very useful in the creation of active wound dressing materials. The present work was undertaken to examine issues concerning structural features, topography, enzymatic degradation behavior, antibacterial activity and cellular response of chitosan/aloe vera-based membranes. The chitosan/aloe vera-based membranes that were developed displayed satisfactory degradation, roughness, wettability and mechanical properties. A higher antibacterial potency was displayed by the blended membranes. Moreover, in vitro assays demonstrated that these blended membranes have good cell compatibility with primary human dermal fibroblasts. The chitosan/aloe vera-based membranes might be promising wound dressing materials.

Collaboration


Dive into the Alexandra P. Marques's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge