Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra Pope is active.

Publication


Featured researches published by Alexandra Pope.


The Astrophysical Journal | 2007

Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth

E. Daddi; M. Dickinson; G. Morrison; Ranga-Ram Chary; A. Cimatti; D. Elbaz; D. T. Frayer; A. Renzini; Alexandra Pope; D. M. Alexander; F. E. Bauer; Mauro Giavalisco; Minh T. Huynh; J. Kurk; Marco Mignoli

Examining a sample of massive galaxies at 1.4 10 11 L⊙, show a mid-IR excess which is likely due to the presence of obscured active nuclei, as shown in a companion paper. There is a tight and roughly linear correlation between stellar mass and SFR for 24µm-detected galaxies. For a given mass, the SFR at z = 2 was larger by a factor of ∼ 4 and ∼ 30 relative to that in star forming galaxies at z = 1 and z = 0, respectively. Typical ultraluminous infrared galaxies (ULIRGs) at z = 2 are relatively ’transparent’ to ultraviolet light, and their activity is long lived ( > ∼ 400 Myr), unlike that in local ULIRGs and high redshift submillimeter-selected galaxies. ULIRGs are the common mode of star formation in massive galaxies at z = 2, and the high duty cycle suggests that major mergers are not the dominant trigger for this activity. Current galaxy formation models underpredict the normalization of the mass-SFR correlation by about a factor of 4, and the space density of ULIRGs by an order of magnitude, but give better agreement for z > 1.4 quiescent galaxies. Subject headings: galaxies: evolution — galaxies: formation — cosmology: observations — galaxies: starbursts — galaxies: high-redshift


Astronomy and Astrophysics | 2011

GOODS–Herschel: an infrared main sequence for star-forming galaxies

D. Elbaz; M. Dickinson; H. S. Hwang; T. Díaz-Santos; G. Magdis; B. Magnelli; D. Le Borgne; F. Galliano; M. Pannella; P. Chanial; Lee Armus; V. Charmandaris; E. Daddi; H. Aussel; P. Popesso; J. Kartaltepe; B. Altieri; I. Valtchanov; D. Coia; H. Dannerbauer; K. Dasyra; R. Leiton; Joseph M. Mazzarella; D. M. Alexander; V. Buat; D. Burgarella; Ranga-Ram Chary; R. Gilli; R. J. Ivison; S. Juneau

We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3–500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡ L_(IR)^(tot)/L_8), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population (  3 × 10^(10) L_⊙ kpc^(-2)) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 A size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L_(IR)^(tot)≥ 10^(11) L_☉), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the “normal” main sequence mode. This confusion between two modes of star formation is the cause of the so-called “mid-IR excess” population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T_(dust) ~ 15–50 K), and an effective T_(dust)  ~ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T_(dust)~ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.


Monthly Notices of the Royal Astronomical Society | 2006

The SCUBA Half-Degree Extragalactic Survey - II. Submillimetre maps, catalogue and number counts

K. Coppin; Edward L. Chapin; A. M. J. Mortier; S. E. Scott; Colin Borys; James Dunlop; M. Halpern; David H. Hughes; Alexandra Pope; D. Scott; S. Serjeant; J. Wagg; D. M. Alexander; Omar Almaini; Itziar Aretxaga; T. Babbedge; Philip Best; A. W. Blain; S. C. Chapman; D. L. Clements; M. Crawford; Loretta Dunne; Stephen Anthony Eales; A. C. Edge; D. Farrah; E. Gaztanaga; Walter Kieran Gear; G. L. Granato; T. R. Greve; M. Fox

We present maps, source catalogue and number counts of the largest, most complete and unbiased extragalactic submillimetre survey: the 850-μm SCUBA Half-Degree Extragalactic Survey (SHADES). Using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT), SHADES mapped two separate regions of sky: the Subaru/XMM–Newton Deep Field (SXDF) and the Lockman Hole East (LH). Encompassing 93 per cent of the overall acquired data (i.e. data taken up to 2004 February 1), these SCUBA maps cover 720 arcmin2 with a rms noise level of about 2 mJy and have uncovered >100 submillimetre galaxies. In order to ensure the utmost robustness of the resulting source catalogue, data reduction was independently carried out by four subgroups within the SHADES team, providing an unprecedented degree of reliability with respect to other SCUBA catalogues available from the literature. Individual source lists from the four groups were combined to produce a robust 120-object SHADES catalogue; an invaluable resource for follow-up campaigns aiming to study the properties of a complete and consistent sample of submillimetre galaxies. For the first time, we present deboosted flux densities for each submillimetre galaxy found in a large survey. Extensive simulations and tests were performed separately by each group in order to confirm the robustness of the source candidates and to evaluate the effects of false detections, completeness and flux density boosting. Corrections for these effects were then applied to the data to derive the submillimetre galaxy source counts. SHADES has a high enough number of detected sources that meaningful differential counts can be estimated, unlike most submillimetre surveys which have to consider integral counts. We present differential and integral source number counts and find that the differential counts are better fit with a broken power law or a Schechter function than with a single power law; the SHADES data alone significantly show that a break is required at several mJy, although the precise position of the break is not well constrained. We also find that a 850-μm survey complete down to 2 mJy would resolve 20–30 per cent of the far-infrared background into point sources.


The Astrophysical Journal | 2007

Multiwavelength Study of Massive Galaxies at z ~ 2. II. Widespread Compton-thick Active Galactic Nuclei and the Concurrent Growth of Black Holes and Bulges

Emanuele Daddi; D. M. Alexander; M. Dickinson; R. Gilli; A. Renzini; D. Elbaz; A. Cimatti; Ranga Ram Chary; D. T. Frayer; F. E. Bauer; W. N. Brandt; Mauro Giavalisco; Norman A. Grogin; Minh T. Huynh; J. Kurk; Marco Mignoli; G. Morrison; Alexandra Pope; Swara Ravindranath

Approximately 20‐30% of 1.4 6.2 keV. The stacked X-ray spectrum rises steeply at > 10 keV, suggesting that these sources host Compton-thick Active Galactic Nuclei (AGNs) with column densities NH > ∼ 10 24 cm −2 and an average, unobscured X-ray luminosity L2−8keV ≈(1‐4) × 10 43 erg s −1 . Their sky density (∼ 3200 deg −2 ) and space density (∼ 2.6 × 10 −4 Mpc −3 ) are twice those of X-ray detected AGNs at z ≈ 2, and much larger than those of previously-known Compton thick sources at similar redshifts. The mid-IR excess galaxies are part of the long sought-after population of distant heavily obscured AGNs predicted by synthesis models of the X-ray background. The fraction of mid-IR excess objects increases with galaxy mass, reaching ∼ 50‐60% for M ∼ 10 11 M⊙, an effect likely connected with downsizing in galaxy formation. The ratio of the inferred black hole growth rate from these Compton-thick sources to the global star formation rate at z = 2 is similar to the mass ratio of black holes to stars in local s pheroids, implying concurrent growth of both within the precursors of today’s massive galaxies. Subject headings:galaxies: evolution — galaxies: formation — galaxies: active — X-rays: galaxies


The Astrophysical Journal | 2008

Mid-Infrared Spectral Diagnosis of Submillimeter Galaxies

Alexandra Pope; Ranga-Ram Chary; D. M. Alexander; Lee Armus; Mark Dickinson; D. Elbaz; David T. Frayer; Douglas Scott; Harry I. Teplitz

We present deep mid-IR spectroscopy with Spitzer of 13 SMGs in the GOODS-N field.We find strong PAH emission in all of our targets, which allows us to measure mid-IR spectroscopic redshifts and place constraints on the contribution from star formation and AGN activity to the mid-IR emission. In the high-S/N composite spectrum, we find that the hot dust continuum from an AGN contributes at most 30% of the mid-IR luminosity. Individually, only 2/13 SMGs have continuum emission dominating the mid-IR luminosity; one of these SMGs, C1, remains undetected in the deep X-ray images but shows a steeply rising continuum in the mid-IR indicative of a Compton-thick AGN. We find that the mid-IR properties of SMGs are distinct from those of 24 μm–selected ULIRGs at z~2; the former are predominantly dominated by star formation, while the latter are a more heterogeneous sample with many showing significant AGN activity.We fit the IRS spectrum and the mid-IR to radio photometry of SMGs with template SEDs to determine the best estimate of the total IR luminosity from star formation. While many SMGs contain an AGN as evinced by their X-ray properties, our multiwavelength analysis shows that the total IR luminosity, L_(IR), in SMGs is dominated by star formation.We find that high-redshift SMGs lie on the relation between L_(IR) and L_(PAH,6.2) (or L_(PAH,7.7) or L_(PAH,11.3))that has been established for local starburst galaxies. This suggests that PAH luminosity can be used as a proxy for the SFR in SMGs. SMGs are consistent with being a short-lived cool phase in a massive merger where the AGN does not appear to have become strong enough to heat the dust and dominate the mid- or far-IR emission.


Monthly Notices of the Royal Astronomical Society | 2006

The Hubble deep field-north SCUBA super-map – IV. Characterizing submillimetre galaxies using deep Spitzer imaging

Alexandra Pope; Douglas Scott; Mark Dickinson; Ranga-Ram Chary; G. Morrison; Colin Borys; Anna Sajina; D. M. Alexander; Emanuele Daddi; David T. Frayer; Emily MacDonald; Daniel Stern

We present spectral energy distributions (SEDs), Spitzer colours, and infrared (IR) luminosities for 850-μm selected galaxies in the Great Observatories Origins Deep Survey Northern (GOODS-N) field. Using the deep Spitzer Legacy images and new data and reductions of the Very Large Array-Hubble Deep Field (VLA-HDF) radio data, we find statistically secure counterparts for 60 per cent (21/35) of our submillimetre (submm) sample, and identify tentative counterparts for another 12 objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer. Half of the secure counterparts have spectroscopic redshifts, while the other half have photometric redshifts. We find that in most cases the 850-μm emission is dominated by a single 24-μm source, with a median flux density of 241 μJy, leading to a median 24-to-850-μm flux density ratio of 0.040. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ultraluminous infrared galaxies (ULIRGs). Using a basic grey-body model, 850-μm selected galaxies appear to be cooler than local ULIRGs of the same luminosity. This demonstrates the strong selection effects, both locally and at high redshift, which may lead to an incomplete census of the ULIRG population. The SEDs of submm galaxies are also different from those of their high-redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR-to-radio SEDs are more like those of local ULIRGs. Using 24-μm, 850-μm and 1.4-GHz observations, we fit templates that span the mid-IR through radio to derive the integrated IR luminosity (LIR) of the submm galaxies and find a median value of LIR(8–1000 μm) = 6.0 × 1012 L. By themselves, 24-μm and radio fluxes are able to predict LIR reasonably well because they are relatively insensitive to temperature. However, the submm flux by itself consistently overpredicts LIR when using spectral templates which obey the local ULIRG temperature–luminosity relation. The shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, and we find that the Spitzer photometry alone provides a model-independent estimate of the redshift, σ[Δz/(1 + z)] = 0.07. The median redshift for our secure submm counterparts is 2.0. Using X-ray and mid-IR data, only 5 per cent of our secure counterparts (1/21) show strong evidence for an active galactic nucleus dominating the LIR.


The Astrophysical Journal | 2009

TWO BRIGHT SUBMILLIMETER GALAXIES IN A z=4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS

E. Daddi; H. Dannerbauer; D. Stern; M. Dickinson; G. Morrison; D. Elbaz; Mauro Giavalisco; C. Mancini; Alexandra Pope; Hyron Spinrad

We present the serendipitous discovery of molecular gas CO emission lines with the IRAM Plateau de Bure interferometer coincident with two luminous submillimeter galaxies (SMGs) in the Great Observatories Origins Deep Survey North field (GOODS-N). The identification of the millimeter emission lines as CO[4-3] at z = 4.05 is based on the optical and near-IR photometric redshifts, radio-infrared photometric redshifts and Keck+DEIMOS optical spectroscopy. These two galaxies include the brightest submillimeter source in the field (GN20; S850µm = 20.3mJy, zCO = 4.055 ± 0.001) and its companion (GN20.2; S850µm = 9.9mJy, zCO = 4.051 ± 0.003). These are among the most distant submillimeter-selected galaxies reliably identified through CO emission and also some of the most luminous known. GN20.2 has a possible additional counterpart and a luminous AGN inside its primary counterpart revealed in the radio. Continuum emission of 0.3mJy at 3.3mm (0.65mm in the rest frame) is detected at 5� for GN20, the first dust continuum detection in an SMG at such long wavelength, unveiling a spectral energy distribution that is similar to local ultra luminous infrared galaxies. In terms of CO to bolometric luminosities, stella r mass and star formation rates (SFRs), these newly discovered z > 4 SMGs are similar to z ∼ 2 − 3 SMGs studied to date. These z ∼ 4 SMGs have much higher specific SFRs than typical B-band dropout Lyman break galaxi es at the same redshift. The stellar mass-SFR correlation for normal galaxies does not seem to evolve much further, between z ∼ 2 and z ∼ 4. A significant z = 4.05 spectroscopic redshift spike is observed in GOODS-N, and a strong spatial overdensity of B-band dropouts and IRAC selected z > 3.5 galaxies appears to be centered on the GN20 and GN20.2 galaxies. This suggests a proto-cluster structure with total mass ∼ 10 14 M⊙. Using photometry at mid-IR (24µm), submm (850µm) and radio (20cm) wavelengths, we show that reliable photometric redshifts (�z/(1+ z) ∼ 0.1) can be derived for SMGs over 1 < ∼ z < ∼ 4. This new photometric redshift technique has been used to provide a first estimate of the space density of 3.5 < z < 6 hyper-luminous starburst galaxies, and to show that they both contribute substantially to the SFR density at early epochs and that they can account for the presence of old galaxies at z ∼ 2 − 3. Many of these high-redshift starbursts will be within rea ch of Herschel. We find that the


web science | 2007

The SCUBA HAlf Degree Extragalactic Survey – III. Identification of radio and mid-infrared counterparts to submillimetre galaxies

R. J. Ivison; T. R. Greve; James Dunlop; J. A. Peacock; E. Egami; Ian Smail; E. Ibar; E. van Kampen; I. Aretxaga; T. Babbedge; A. D. Biggs; A. W. Blain; Sydney Chapman; D. L. Clements; K. Coppin; D. Farrah; M. Halpern; David H. Hughes; M. J. Jarvis; T. Jenness; J. R. Jones; A. M. J. Mortier; Seb Oliver; Casey Papovich; P. G. Pérez-González; Alexandra Pope; Steve Rawlings; G. H. Rieke; M. Rowan-Robinson; Richard S. Savage

Determining an accurate position for a submillimetre (submm) galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample – source counts and 2D clustering – to an assessment of their detailed, multiwavelength properties, their contribution to the history of cosmic star formation and their links with present-day galaxy populations. In this paper, we identify robust radio and/or infrared (IR) counterparts, and hence accurate positions, for over two-thirds of the SCUBA HAlf-Degree Extragalactic Survey (SHADES) Source Catalogue, presenting optical, 24-μm and radio images of each SMG. Observed trends in identification rate have given no strong rationale for pruning the sample. Uncertainties in submm position are found to be consistent with theoretical expectations, with no evidence for significant additional sources of error. Employing the submm/radio redshift indicator, via a parametrization appropriate for radio-identified SMGs with spectroscopic redshifts, yields a median redshift of 2.8 for the radio-identified subset of SHADES, somewhat higher than the median spectroscopic redshift. We present a diagnostic colour–colour plot, exploiting Spitzer photometry, in which we identify regions commensurate with SMGs at very high redshift. Finally, we find that significantly more SMGs have multiple robust counterparts than would be expected by chance, indicative of physical associations. These multiple systems are most common amongst the brightest SMGs and are typically separated by 2–6 arcsec, ~15–50/ sin i kpc at z∼ 2, consistent with early bursts seen in merger simulations.


The Astrophysical Journal | 2007

Multiwavelength study of massive galaxies at z similar to 2. II. Widespread compton-thick active galactic nuclei and the concurrent growth of black holes and bulges

E. Daddi; D. M. Alexander; M. Dickinson; R. Gilli; A. Renzini; D. Elbaz; A. Cimatti; R.-R. Chary; D. T. Frayer; F. E. Bauer; W. N. Brandt; Mauro Giavalisco; Norman A. Grogin; Minh T. Huynh; J. Kurk; M. Mignoli; G. Morrison; Alexandra Pope; Swara Ravindranath

Approximately 20‐30% of 1.4 6.2 keV. The stacked X-ray spectrum rises steeply at > 10 keV, suggesting that these sources host Compton-thick Active Galactic Nuclei (AGNs) with column densities NH > ∼ 10 24 cm −2 and an average, unobscured X-ray luminosity L2−8keV ≈(1‐4) × 10 43 erg s −1 . Their sky density (∼ 3200 deg −2 ) and space density (∼ 2.6 × 10 −4 Mpc −3 ) are twice those of X-ray detected AGNs at z ≈ 2, and much larger than those of previously-known Compton thick sources at similar redshifts. The mid-IR excess galaxies are part of the long sought-after population of distant heavily obscured AGNs predicted by synthesis models of the X-ray background. The fraction of mid-IR excess objects increases with galaxy mass, reaching ∼ 50‐60% for M ∼ 10 11 M⊙, an effect likely connected with downsizing in galaxy formation. The ratio of the inferred black hole growth rate from these Compton-thick sources to the global star formation rate at z = 2 is similar to the mass ratio of black holes to stars in local s pheroids, implying concurrent growth of both within the precursors of today’s massive galaxies. Subject headings:galaxies: evolution — galaxies: formation — galaxies: active — X-rays: galaxies


Monthly Notices of the Royal Astronomical Society | 2005

The Hubble Deep Field North SCUBA Super‐map – III. Optical and near‐infrared properties of submillimetre galaxies

Alexandra Pope; Colin Borys; Douglas Scott; Christopher J. Conselice; Mark Dickinson; B. Mobasher

We present a new submillimetre (submm) super-map in the Hubble Deep Field North (HDF-N) region (Great Observatories Origins Deep Survey North, GOODS-N, field), containing 40 statistically robust sources at 850 μm. This map contains additional data, and several new sources, including one of the brightest blank-sky extragalactic submm sources ever detected. We have used the Advanced Camera for Surveys (ACS) Hubble Space Telescope (HST) images and ground-based near-infrared (IR) observations from the Great Observatories Origins Deep Survey (GOODS), along with deep radio observations, to develop a systematic approach for counterpart identification. With the depth achieved by this survey, optical counterparts have been found for all the radio-detected (RD) submm sources. We have used the colours, morphologies and photometric redshifts of these secure identifications to help identify counterparts to the radio-undetected (RU) sources, finding that certain combinations of optical properties can be used to successfully identify the counterpart to a submm source. 72 per cent of our sources with optical coverage have a unique optical counterpart using our new techniques for counterpart identification and an additional 18 per cent have more than one possibility that meet our criteria in the ACS images. Thus, only ∼10 per cent of our sources lack a plausible optical/near-IR counterpart, meaning that we have the first sample of Submillimetre Common User Bolometer Array (SCUBA) sources that is nearly completely identified in the optical. We have found a much higher extremely red object (ERO) rate than other submm surveys, as a result of the increased depth in the optical images. The median photometric redshift (and quartile range), from optical and near-IR data, is 1.7 (1.3-2.5) for the RD submm sources and rises to 2.3 (1.3-2.7) for the RU subsample. We find interesting correlations between the 850-μm flux and both the ι 775 magnitude and the photometric redshift, from which there appears to be an absence of high-redshift faint counterparts to the lower flux density SCUBA sources. While the quantitative morphologies span a range of values, in general the submm galaxies show larger sizes and a higher degree of asymmetry than other galaxy populations at the same redshifts. In the Appendix, we discuss several improvements in our data analysis procedure, including methods of testing for source reliability.

Collaboration


Dive into the Alexandra Pope's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranga-Ram Chary

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Douglas Scott

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

R. J. Ivison

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

James Dunlop

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Lee Armus

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Borys

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark Dickinson

Space Telescope Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge