Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra Sobeck is active.

Publication


Featured researches published by Alexandra Sobeck.


The EMBO Journal | 2005

BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity

Jinhu Yin; Alexandra Sobeck; Chang Xu; Amom Ruhikanta Meetei; Maureen E. Hoatlin; Lei Li; Weidong Wang

Blooms syndrome (BS) is a rare human genetic disorder characterized by dwarfism, immunodeficiency, genomic instability and cancer predisposition. We have previously purified three complexes containing BLM, the helicase mutated in this disease. Here we demonstrate that BLAP75, a novel protein containing a putative OB‐fold nucleic acid binding domain, is an integral component of BLM complexes, and is essential for their stability in vivo. Consistent with a role in BLM‐mediated processes, BLAP75 colocalizes with BLM in subnuclear foci in response to DNA damage, and its depletion impairs the recruitment of BLM to these foci. Depletion of BLAP75 by siRNA also results in deficient phosphorylation of BLM during mitosis, as well as defective cell proliferation. Moreover, cells depleted of BLAP75 display an increased level of sister‐chromatid exchange, similar to cells depleted of BLM by siRNA. Thus, BLAP75 is an essential component of the BLM‐associated cellular machinery that maintains genome integrity.


Genes & Development | 2008

RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability

Dongyi Xu; Rong Guo; Alexandra Sobeck; Csanád Z. Bachrati; Jay Yang; Takemi Enomoto; Grant W. Brown; Maureen E. Hoatlin; Ian D. Hickson; Weidong Wang

BLM, the helicase mutated in Bloom syndrome, associates with topoisomerase 3alpha, RMI1 (RecQ-mediated genome instability), and RPA, to form a complex essential for the maintenance of genome stability. Here we report a novel component of the BLM complex, RMI2, which interacts with RMI1 through two oligonucleotide-binding (OB)-fold domains similar to those in RPA. The resulting complex, named RMI, differs from RPA in that it lacks obvious DNA-binding activity. Nevertheless, RMI stimulates the dissolution of a homologous recombination intermediate in vitro and is essential for the stability, localization, and function of the BLM complex in vivo. Notably, inactivation of RMI2 in chicken DT40 cells results in an increased level of sister chromatid exchange (SCE)--the hallmark feature of Bloom syndrome cells. Epistasis analysis revealed that RMI2 and BLM suppress SCE within the same pathway. A point mutation in the OB domain of RMI2 disrupts the association between BLM and the rest of the complex, and abrogates the ability of RMI2 to suppress elevated SCE. Our data suggest that multi-OB-fold complexes mediate two modes of BLM action: via RPA-mediated protein-DNA interaction, and via RMI-mediated protein-protein interactions.


Molecular and Cellular Biology | 2006

Fanconi Anemia Proteins Are Required To Prevent Accumulation of Replication-Associated DNA Double-Strand Breaks

Alexandra Sobeck; Stacie Stone; Vincenzo Costanzo; Bendert de Graaf; Tanja Reuter; Johan P. de Winter; Michael Wallisch; Yassmine Akkari; Susan B. Olson; Weidong Wang; Hans Joenje; Jan L. Christian; Patrick J. Lupardus; Karlene A. Cimprich; Jean Gautier; Maureen E. Hoatlin

ABSTRACT Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.


Nucleic Acids Research | 2013

FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery

Indrajit Chaudhury; Archana Sareen; Maya Raghunandan; Alexandra Sobeck

Fanconi Anemia (FA) and Bloom Syndrome share overlapping phenotypes including spontaneous chromosomal abnormalities and increased cancer predisposition. The FA protein pathway comprises an upstream core complex that mediates recruitment of two central players, FANCD2 and FANCI, to sites of stalled replication forks. Successful fork recovery depends on the Bloom’s helicase BLM that participates in a larger protein complex (‘BLMcx’) containing topoisomerase III alpha, RMI1, RMI2 and replication protein A. We show that FANCD2 is an essential regulator of BLMcx functions: it maintains BLM protein stability and is crucial for complete BLMcx assembly; moreover, it recruits BLMcx to replicating chromatin during normal S-phase and mediates phosphorylation of BLMcx members in response to DNA damage. During replication stress, FANCD2 and BLM cooperate to promote restart of stalled replication forks while suppressing firing of new replication origins. In contrast, FANCI is dispensable for FANCD2-dependent BLMcx regulation, demonstrating functional separation of FANCD2 from FANCI.


Human Molecular Genetics | 2014

CtIP mediates replication fork recovery in a FANCD2-regulated manner.

Jung Eun Yeo; Eu Han Lee; Eric A. Hendrickson; Alexandra Sobeck

Fanconi anemia (FA) is a chromosome instability syndrome characterized by increased cancer predisposition. Within the FA pathway, an upstream FA core complex mediates monoubiquitination and recruitment of the central FANCD2 protein to sites of stalled replication forks. Once recruited, FANCD2 fulfills a dual role towards replication fork recovery: (i) it cooperates with BRCA2 and RAD51 to protect forks from nucleolytic degradation and (ii) it recruits the BLM helicase to promote replication fork restart while suppressing new origin firing. Intriguingly, FANCD2 and its interaction partners are also involved in homologous recombination (HR) repair of DNA double-strand breaks, hinting that FANCD2 utilizes HR proteins to mediate replication fork recovery. One such candidate is CtIP (CtBP-interacting protein), a key HR repair factor that functions in complex with BRCA1 and MRE11, but has not been investigated as putative player in the replication stress response. Here, we identify CtIP as a novel interaction partner of FANCD2. CtIP binds and stabilizes FANCD2 in a DNA damage- and FA core complex-independent manner, suggesting that FANCD2 monoubiquitination is dispensable for its interaction with CtIP. Following cellular treatment with a replication inhibitor, aphidicolin, FANCD2 recruits CtIP to transiently stalled, as well as collapsed, replication forks on chromatin. At stalled forks, CtIP cooperates with FANCD2 to promote fork restart and the suppression of new origin firing. Both functions are dependent on BRCA1 that controls the step-wise recruitment of MRE11, FANCD2 and finally CtIP to stalled replication forks, followed by their concerted actions to promote fork recovery.


The EMBO Journal | 2015

Regulation of the Rev1-pol ζ complex during bypass of a DNA interstrand cross-link.

Magda Budzowska; Thomas G.W. Graham; Alexandra Sobeck; Shou Waga; Johannes C. Walter

DNA interstrand cross‐links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL (“approach”), a nucleotide is inserted across from the unhooked lesion (“insertion”), and the leading strand is extended beyond the lesion (“extension”). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site‐specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error‐free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1–pol ζ recruitment requires the Fanconi anemia core complex but not FancI–FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair‐associated mutagenesis.


International Journal of Radiation Oncology Biology Physics | 1998

Sequence analysis of the ATM gene in 20 patients with RTOG grade 3 or 4 acute and/or late tissue radiation side effects

Ulrich Oppitz; Ulrike Bernthaler; Detlev Schindler; Alexandra Sobeck; Holger Hoehn; Matthias Platzer; André Rosenthal; Michael Flentje

PURPOSE Patients with ataxia-telangiectasia (A-T) show greatly increased radiation sensitivity and cancer predisposition. Family studies imply that the otherwise clinically silent heterozygotes of this autosomal recessive disease run a 3.5 to 3.8 higher risk of developing cancer. In vitro studies suggest moderately increased cellular radiation sensitivity of A-T carriers. They may also show elevated clinical radiosensitivity. We retrospectively examined patients who presented with severe adverse reactions during or after standard radiation treatment for mutations in the gene responsible for A-T, ATM, considering a potential means of future identification of radiosensitive individuals prospectively to adjust dosage schedules. MATERIAL AND METHODS We selected 20 cancer patients (breast, 11; rectum, 2; ENT, 2; bladder, 1; prostate, 1; anus, 1; astrocytoma, 1; Hodgkins lymphoma, 1) with Grade 3 to 4 (RTOG) acute and/or late tissue radiation side effects by reaction severity. DNA from the peripheral blood of patients was isolated. All 66 exons and adjacent intron regions of the ATM gene were PCR-amplified and examined for mutations by a combination of agarose gel electrophoresis, single-stranded conformational polymorphism (SSCP) analysis, and exon-scanning direct sequencing. RESULTS Only 2 of the patients revealed altogether four heteroallelic sequence variants. The latter included two single-base deletions in different introns, a single-base change causing an amino acid substitution in an exon, and a large insertion in another intron. Both the single-base deletions and the single-base change represent known polymorphisms. The large insertion was an Alu repeat, shown not to give rise to altered gene product. CONCLUSIONS Despite high technical efforts, no unequivocal ATM mutation was detected. Nevertheless, extension of similar studies to larger and differently composed cohorts of patients suffering severe adverse effects of radiotherapy, and application of new technologies for mutation detection may be worthwhile to assess the definite prevalence of significant ATM mutations within the group of radiotherapy patients with adverse reactions. To date, it must be recognized that our present results do not suggest that heterozygous ATM mutations are involved in clinically observed radiosensitivity but, rather, invoke different genetic predisposition or so far unknown exogenous factors.


Molecular and Cellular Biology | 2007

DNA Structure-Induced Recruitment and Activation of the Fanconi Anemia Pathway Protein FANCD2

Alexandra Sobeck; Stacie Stone; Maureen E. Hoatlin

ABSTRACT The Fanconi anemia (FA) pathway proteins are thought to be involved in the repair of irregular DNA structures including those encountered by the moving replication fork. However, the nature of the DNA structures that recruit and activate the FA proteins is not known. Because FA proteins function within an extended network of proteins, some of which are still unknown, we recently established cell-free assays in Xenopus laevis egg extracts to deconstruct the FA pathway in a fully replication-competent context. Here we show that the central FA pathway protein, xFANCD2, is monoubiquitinated (xFANCD2-L) rapidly in the presence of linear and branched double-stranded DNA (dsDNA) structures but not single-stranded or Y-shaped DNA. xFANCD2-L associates with dsDNA structures in an FA core complex-dependent manner but independently of xATRIP, the regulatory subunit of xATR. Formation of xFANCD2-L is also triggered in response to circular dsDNA, suggesting that dsDNA ends are not required to trigger monoubiquitination of FANCD2. The induction of xFANCD2-L in response to circular dsDNA is replication and checkpoint independent. Our results provide new evidence that the FA pathway discriminates among DNA structures and demonstrate that triggering the FA pathway can be uncoupled from DNA replication and ATRIP-dependent activation.


Molecular and Cellular Biology | 2014

FANCD2-Controlled Chromatin Access of the Fanconi-Associated Nuclease FAN1 Is Crucial for the Recovery of Stalled Replication Forks

Indrajit Chaudhury; Daniel R. Stroik; Alexandra Sobeck

ABSTRACT Fanconi anemia (FA) is a cancer predisposition syndrome characterized by cellular hypersensitivity to DNA interstrand cross-links (ICLs). Within the FA pathway, an upstream core complex monoubiquitinates and recruits the FANCD2 protein to ICLs on chromatin. Ensuing DNA repair involves the Fanconi-associated nuclease 1 (FAN1), which interacts selectively with monoubiquitinated FANCD2 (FANCD2Ub) at ICLs. Importantly, FANCD2 has additional independent functions: it binds chromatin and coordinates the restart of aphidicolin (APH)-stalled replication forks in concert with the BLM helicase, while protecting forks from nucleolytic degradation by MRE11. We identified FAN1 as a new crucial replication fork recovery factor. FAN1 joins the BLM-FANCD2 complex following APH-mediated fork stalling in a manner dependent on MRE11 and FANCD2, followed by FAN1 nuclease-mediated fork restart. Surprisingly, APH-induced activation and chromatin recruitment of FAN1 occur independently of the FA core complex or the FAN1 UBZ domain, indicating that the FANCD2Ub isoform is dispensable for functional FANCD2-FAN1 cross talk during stalled fork recovery. In the absence of FANCD2, MRE11 exonuclease-promoted access of FAN1 to stalled forks results in severe FAN1-mediated nucleolytic degradation of nascent DNA strands. Thus, FAN1 nuclease activity at stalled replication forks requires tight regulation: too little inhibits fork restart, whereas too much causes fork degradation.


Nucleic Acids Research | 2012

Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase

Archana Sareen; Indrajit Chaudhury; Nicole Adams; Alexandra Sobeck

Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2–FANCI complex versus the monomeric proteins are. We show that the FANCD2–FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2–FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to—and independently of—FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase.

Collaboration


Dive into the Alexandra Sobeck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Joenje

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge