Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandra Weigelt is active.

Publication


Featured researches published by Alexandra Weigelt.


Nature | 2011

High plant diversity is needed to maintain ecosystem services

Forest Isbell; Vincent Calcagno; Andy Hector; John Connolly; W. Stanley Harpole; Peter B. Reich; Michael Scherer-Lorenzen; Bernhard Schmid; David Tilman; Jasper van Ruijven; Alexandra Weigelt; Brian J. Wilsey; Erika S. Zavaleta; Michel Loreau

Biodiversity is rapidly declining worldwide, and there is consensus that this can decrease ecosystem functioning and services. It remains unclear, though, whether few or many of the species in an ecosystem are needed to sustain the provisioning of ecosystem services. It has been hypothesized that most species would promote ecosystem services if many times, places, functions and environmental changes were considered; however, no previous study has considered all of these factors together. Here we show that 84% of the 147 grassland plant species studied in 17 biodiversity experiments promoted ecosystem functioning at least once. Different species promoted ecosystem functioning during different years, at different places, for different functions and under different environmental change scenarios. Furthermore, the species needed to provide one function during multiple years were not the same as those needed to provide multiple functions within one year. Our results indicate that even more species will be needed to maintain ecosystem functioning and services than previously suggested by studies that have either (1) considered only the number of species needed to promote one function under one set of environmental conditions, or (2) separately considered the importance of biodiversity for providing ecosystem functioning across multiple years, places, functions or environmental change scenarios. Therefore, although species may appear functionally redundant when one function is considered under one set of environmental conditions, many species are needed to maintain multiple functions at multiple times and places in a changing world.


Nature | 2010

Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment

Christoph Scherber; Nico Eisenhauer; Wolfgang W. Weisser; Bernhard Schmid; Winfried Voigt; Markus Fischer; Ernst-Detlef Schulze; Christiane Roscher; Alexandra Weigelt; Eric Allan; Holger Beßler; Michael Bonkowski; N. C. Buchmann; François Buscot; Lars W. Clement; Anne Ebeling; Christof Engels; Stefan Halle; Ilona Kertscher; Alexandra-Maria Klein; Robert Koller; Stephan König; Esther Kowalski; Volker Kummer; Annely Kuu; Markus Lange; Dirk Lauterbach; Cornelius Middelhoff; Varvara D. Migunova; Alexandru Milcu

Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.


Nature | 2015

Biodiversity Increases the Resistance of Ecosystem Productivity to Climate Extremes

Forest Isbell; Dylan Craven; John Connolly; Michael Loreau; Bernhard Schmid; Carl Beierkuhnlein; T. Martin Bezemer; Catherine L. Bonin; Helge Bruelheide; Enrica De Luca; Anne Ebeling; John N. Griffin; Qinfeng Guo; Yann Hautier; Andy Hector; Anke Jentsch; Jürgen Kreyling; Vojtěch Lanta; Peter Manning; Sebastian T. Meyer; Akira Mori; Shahid Naeem; Pascal A. Niklaus; H. Wayne Polley; Peter B. Reich; Christiane Roscher; Eric W. Seabloom; Melinda D. Smith; Madhav P. Thakur; David Tilman

It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.


Ecology | 2009

Plant species richness and functional composition drive overyielding in a six‐year grassland experiment

Elisabeth Marquard; Alexandra Weigelt; Vicky M. Temperton; Christiane Roscher; Jens Schumacher; Nina Buchmann; Markus Fischer; Wolfgang W. Weisser; Bernhard Schmid

Plant diversity has been shown to increase community biomass in experimental communities, but the mechanisms resulting in such positive biodiversity effects have remained largely unknown. We used a large-scale six-year biodiversity experiment near Jena, Germany, to examine how aboveground community biomass in grasslands is affected by different components of plant diversity and thereby infer the mechanisms that may underlie positive biodiversity effects. As components of diversity we defined the number of species (1-16), number of functional groups (1-4), presence of functional groups (legumes, tall herbs, small herbs, and grasses) and proportional abundance of functional groups. Using linear models, replacement series on the level of functional groups, and additive partitioning on the level of species, we explored whether the observed biodiversity effects originated from disproportionate effects of single functional groups or species or from positive interactions between them. Aboveground community biomass was positively related to the number of species measured across functional groups as well as to the number of functional groups measured across different levels of species richness. Furthermore, increasing the number of species within functional groups increased aboveground community biomass, indicating that species within functional groups were not redundant with respect to biomass production. A positive relationship between the number of functional groups and aboveground community biomass within a particular level of species richness suggested that complementarity was larger between species belonging to different rather than to the same functional groups. The presence of legumes or tall herbs had a strong positive impact on aboveground community biomass whereas the presence of small herbs or grasses had on average no significant effect. Two- and three-way interactions between functional group presences were weak, suggesting that their main effects were largely additive. Replacement series analyses on the level of functional groups revealed strong transgressive overyielding and relative yields >1, indicating facilitation. On the species level, we found strong complementarity effects that increased over time while selection effects due to disproportionate contributions of particular species decreased over time. We conclude that transgressive overyielding between functional groups and species richness effects within functional groups caused the positive biodiversity effects on aboveground community biomass in our experiment.


Ecology | 2010

Plant diversity effects on soil microorganisms support the singular hypothesis

Nico Eisenhauer; Holger Beßler; Christof Engels; Gerd Gleixner; Maike Habekost; Alexandru Milcu; Stephan Partsch; Alexander C.W. Sabais; Christoph Scherber; Sibylle Steinbeiss; Alexandra Weigelt; Wolfgang W. Weisser; Stefan Scheu

The global decline in biodiversity has generated concern over the consequences for ecosystem functioning and services. Although ecosystem functions driven by soil microorganisms such as plant productivity, decomposition, and nutrient cycling are of particular importance, interrelationships between plant diversity and soil microorganisms are poorly understood. We analyzed the response of soil microorganisms to variations in plant species richness (1-60) and plant functional group richness (1-4) in an experimental grassland system over a period of six years. Major abiotic and biotic factors were considered for exploring the mechanisms responsible for diversity effects. Further, microbial growth characteristics were assessed following the addition of macronutrients. Effects of plant diversity on soil microorganisms were most pronounced in the most diverse plant communities though differences only became established after a time lag of four years. Differences in microbial growth characteristics indicate successional changes from a disturbed (zymogeneous) to an established (autochthonous) microbial community four years after establishment of the experiment. Supporting the singular hypothesis for plant diversity, the results suggest that plant species are unique, each contributing to the functioning of the belowground system. The results reinforce the need for long-term biodiversity experiments to fully appreciate consequences of current biodiversity loss for ecosystem functioning.


Oecologia | 2005

Preferential uptake of soil nitrogen forms by grassland plant species

Alexandra Weigelt; Roland Bol; Richard D. Bardgett

In this study, we assessed whether a range of temperate grassland species showed preferential uptake for different chemical forms of N, including inorganic N and a range of amino acids that commonly occur in temperate grassland soil. Preferential uptake of dual-labelled (13C and 15N) glycine, serine, arginine and phenylalanine, as compared to inorganic N, was tested using plants growing in pots with natural field soil. We selected five grass species representing a gradient from fertilised, productive pastures to extensive, low productivity pastures (Lolium perenne, Holcus lanatus, Anthoxanthum odoratum, Deschampsia flexuosa, and Nardus stricta). Our data show that all grass species were able to take up directly a diversity of soil amino acids of varying complexity. Moreover, we present evidence of marked inter-species differences in preferential use of chemical forms of N of varying complexity. L. perenne was relatively more effective at using inorganic N and glycine compared to the most complex amino acid phenylalanine, whereas N. stricta showed a significant preference for serine over inorganic N. Total plant N acquisition, measured as root and shoot concentration of labelled compounds, also revealed pronounced inter-species differences which were related to plant growth rate: plants with higher biomass production were found to take up more inorganic N. Our findings indicate that species-specific differences in direct uptake of different N forms combined with total N acquisition could explain changes in competitive dominance of grass species in grasslands of differing fertility.


PLOS ONE | 2012

Using Plant Functional Traits to Explain Diversity–Productivity Relationships

Christiane Roscher; Jens Schumacher; Marlén Gubsch; Annett Lipowsky; Alexandra Weigelt; Nina Buchmann; Bernhard Schmid; Ernst-Detlef Schulze

Background The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings We used two community-wide measures of plant functional composition, (1) community-weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (<1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production.


PLOS ONE | 2011

Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

Nico Eisenhauer; Alexandru Milcu; Alexander C.W. Sabais; Holger Bessler; Johanna Brenner; Christof Engels; Bernhard Klarner; Mark Maraun; Stephan Partsch; Christiane Roscher; Felix Schonert; Vicky M. Temperton; Karolin Thomisch; Alexandra Weigelt; Wolfgang W. Weisser; Stefan Scheu

Background One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments. Methodology/Principal Findings We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time. Conclusions/Significance Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.


Proceedings of the National Academy of Sciences of the United States of America | 2011

More diverse plant communities have higher functioning over time due to turnover in complementary dominant species

Eric Allan; Wolfgang W. Weisser; Alexandra Weigelt; Christiane Roscher; Markus Fischer; Helmut Hillebrand

More diverse communities have been shown to have higher and more temporally stable ecosystem functioning than less diverse ones, suggesting they should also have a consistently higher level of functioning over time. Diverse communities could maintain consistently high function because the species driving function change over time (functional turnover) or because they are more likely to contain key species with temporally stable functioning. Across 7 y in a large biodiversity experiment, we show that more diverse plant communities had consistently higher productivity, that is, a higher level of functioning over time. We identify the mechanism for this as turnover in the species driving biomass production; this was substantial, and species that were rare in some years became dominant and drove function in other years. Such high turnover allowed functionally more diverse communities to maintain high biomass over time and was associated with higher levels of complementarity effects in these communities. In contrast, turnover in communities composed of functionally similar species did not promote high biomass production over time. Thus, turnover in species promotes consistently high ecosystem function when it sustains functionally complementary interactions between species. Our results strongly reinforce the argument for conservation of high biodiversity.


PLOS ONE | 2012

Grassland Resistance and Resilience after Drought Depends on Management Intensity and Species Richness

Anja Vogel; Michael Scherer-Lorenzen; Alexandra Weigelt

The degree to which biodiversity may promote the stability of grasslands in the light of climatic variability, such as prolonged summer drought, has attracted considerable interest. Studies so far yielded inconsistent results and in addition, the effect of different grassland management practices on their response to drought remains an open question. We experimentally combined the manipulation of prolonged summer drought (sheltered vs. unsheltered sites), plant species loss (6 levels of 60 down to 1 species) and management intensity (4 levels varying in mowing frequency and amount of fertilizer application). Stability was measured as resistance and resilience of aboveground biomass production in grasslands against decreased summer precipitation, where resistance is the difference between drought treatments directly after drought induction and resilience is the difference between drought treatments in spring of the following year. We hypothesized that (i) management intensification amplifies biomass decrease under drought, (ii) resistance decreases with increasing species richness and with management intensification and (iii) resilience increases with increasing species richness and with management intensification. We found that resistance and resilience of grasslands to summer drought are highly dependent on management intensity and partly on species richness. Frequent mowing reduced the resistance of grasslands against drought and increasing species richness decreased resistance in one of our two study years. Resilience was positively related to species richness only under the highest management treatment. We conclude that low mowing frequency is more important for high resistance against drought than species richness. Nevertheless, species richness increased aboveground productivity in all management treatments both under drought and ambient conditions and should therefore be maintained under future climates.

Collaboration


Dive into the Alexandra Weigelt's collaboration.

Top Co-Authors

Avatar

Christiane Roscher

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Scheu

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge