Alexandre Bougdour
Joseph Fourier University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandre Bougdour.
Journal of Experimental Medicine | 2009
Alexandre Bougdour; Danièle Maubon; Patricia Baldacci; Philippe Ortet; Olivier Bastien; Anthony Bouillon; Jean-Christophe Barale; Hervé Pelloux; Robert Ménard; Mohamed-Ali Hakimi
Plasmodium and Toxoplasma are parasites of major medical importance that belong to the Apicomplexa phylum of protozoa. These parasites transform into various stages during their life cycle and express a specific set of proteins at each stage. Although little is yet known of how gene expression is controlled in Apicomplexa, histone modifications, particularly acetylation, are emerging as key regulators of parasite differentiation and stage conversion. We investigated the anti-Apicomplexa effect of FR235222, a histone deacetylase inhibitor (HDACi). We show that FR235222 is active against a variety of Apicomplexa genera, including Plasmodium and Toxoplasma, and is more potent than other HDACis such as trichostatin A and the clinically relevant compound pyrimethamine. We identify T. gondii HDAC3 (TgHDAC3) as the target of FR235222 in Toxoplasma tachyzoites and demonstrate the crucial role of the conserved and Apicomplexa HDAC-specific residue TgHDAC3 T99 in the inhibitory activity of the drug. We also show that FR235222 induces differentiation of the tachyzoite (replicative) into the bradyzoite (nonreplicative) stage. Additionally, via its anti-TgHDAC3 activity, FR235222 influences the expression of ∼370 genes, a third of which are stage-specifically expressed. These results identify FR235222 as a potent HDACi of Apicomplexa, and establish HDAC3 as a central regulator of gene expression and stage conversion in Toxoplasma and, likely, other Apicomplexa.
Cell Host & Microbe | 2013
Alexandre Bougdour; Eric Durandau; Marie-Pierre Brenier-Pinchart; Philippe Ortet; Mohamed Barakat; Sylvie Kieffer; Aurélie Curt-Varesano; Rose-Laurence Curt-Bertini; Olivier Bastien; Yohann Couté; Hervé Pelloux; Mohamed-Ali Hakimi
After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function.
Journal of Experimental Medicine | 2013
Laurence Braun; Marie-Pierre Brenier-Pinchart; Manickam Yogavel; Aurélie Curt-Varesano; Rose-Laurence Curt-Bertini; Tahir Hussain; Sylvie Kieffer-Jaquinod; Yohann Couté; Hervé Pelloux; Isabelle Tardieux; Amit Sharma; Hassan Belrhali; Alexandre Bougdour; Mohamed-Ali Hakimi
Toxoplasma gondii secretes a novel dense granule protein, GRA24, that traffics from the vacuole to the host cell nucleus where it prolongs p38a activation and correlates with proinflammatory cytokine production.
Cell Host & Microbe | 2015
Daniel A. Gold; Aaron D. Kaplan; Agnieszka Lis; Glenna C.L. Bett; Emily E. Rosowski; Kimberly M. Cirelli; Alexandre Bougdour; Saima M. Sidik; Josh R. Beck; Sebastian Lourido; Pascal F. Egea; Peter J. Bradley; Mohamed-Ali Hakimi; Randall L. Rasmusson; Jeroen Saeij
Toxoplasma gondii is a protozoan pathogen in the phylum Apicomplexa that resides within an intracellular parasitophorous vacuole (PV) that is selectively permeable to small molecules through unidentified mechanisms. We have identified GRA17 as a Toxoplasma-secreted protein that localizes to the parasitophorous vacuole membrane (PVM) and mediates passive transport of small molecules across the PVM. GRA17 is related to the putative Plasmodium translocon protein EXP2 and conserved across PV-residing Apicomplexa. The PVs of GRA17-deficient parasites have aberrant morphology, reduced permeability to small molecules, and structural instability. GRA17-deficient parasites proliferate slowly and are avirulent in mice. These GRA17-deficient phenotypes are rescued by complementation with Plasmodium EXP2. GRA17 functions synergistically with a related protein, GRA23. Exogenous expression of GRA17 or GRA23 alters the membrane conductance properties of Xenopus oocytes in a manner consistent with a large non-selective pore. Thus, GRA17 and GRA23 provide a molecular basis for PVM permeability and nutrient access.
Cellular Microbiology | 2010
Alexandre Bougdour; Laurence Braun; Dominique Cannella; Mohamed-Ali Hakimi
The apicomplexan Toxoplasma gondii completes its life cycle by successive processes of parasite differentiation that rely on a tight control of gene expression to ensure appropriate protein profiles on time. During the last 5 years, several groups have pioneered this field of investigation, suggesting that epigenetics could play an important role in the control of parasite gene expression. Histone modifications serve as an effective way to regulate gene transcription but they do not operate alone; rather, they act in concert with other putative epigenetic information carriers (histone variants, small RNAs) and DNA sequence‐specific transcription factors to modulate the higher‐order structure of the chromatin fibre and govern the on‐time recruitment of the transcriptional machinery to specific genes. Regarding the ‘histone code’ hypothesis, the parasite is endowed with a rich repertoire of histone‐modifying enzymes catalysing site‐selective modifications, which are subsequently interpreted by effector proteins that recognize specific covalent marks. Still, several peculiarities seem unique to T. gondii. This review is a synthesis of the current knowledge of how epigenetics contribute to the control of gene expression in T. gondii and, likely, other Apicomplexa.
Cellular Microbiology | 2014
Alexandre Bougdour; Isabelle Tardieux; Mohamed-Ali Hakimi
Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm‐blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine‐tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long‐term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole‐containing parasites and reach the host cell nucleus to reshape the host genome expression.
Cell Reports | 2014
Dominique Cannella; Marie-Pierre Brenier-Pinchart; Laurence Braun; Jason M. van Rooyen; Alexandre Bougdour; Olivier Bastien; Michael S. Behnke; Rose-Laurence Curt; Aurélie Curt; Jeroen Saeij; L. David Sibley; Hervé Pelloux; Mohamed-Ali Hakimi
microRNAs were recently found to be regulators of the host response to infection by apicomplexan parasites. In this study, we identified two immunomodulatory microRNAs, miR-146a and miR-155, that were coinduced in the brains of mice challenged with Toxoplasma in a strain-specific manner. These microRNAs define a characteristic fingerprint for infection by type II strains, which are the most prevalent cause of human toxoplasmosis in Europe and North America. Using forward genetics, we showed that strain-specific differences in miR-146a modulation were in part mediated by the rhoptry kinase, ROP16. Remarkably, we found that miR-146a deficiency led to better control of parasite burden in the gut and most likely of early parasite dissemination in the brain tissue, resulting in the long-term survival of mice.
Current Opinion in Microbiology | 2015
Mohamed-Ali Hakimi; Alexandre Bougdour
The obligate intracellular parasite Toxoplasma gondii strikes a subtle balance with the host immune system that not only prevents host death but also promotes parasite persistence. Although being enclosed within a parasitophorous vacuole, the parasite actively interfaces with host cell signaling pathways, thereby directing host cell responses. To this end, T. gondii delivers effector proteins into the host cell that co-opt host transcription factors and eventually modulate gene expression. Aside from the secretory Rhoptry organelles initially described as the main source of such effectors, Dense Granules are now recognized as critical in delivering products that remain confined at the vacuolar space or traffic beyond the vacuole membrane to the host cell nucleus and contribute to rewire host gene expression. This review highlights the latest breakthroughs in T. gondii effector discovery and their modus operandi during infection.
Antimicrobial Agents and Chemotherapy | 2010
Danièle Maubon; Alexandre Bougdour; Yung-Sing Wong; Marie-Pierre Brenier-Pinchart; Aurélie Curt; Mohamed-Ali Hakimi; Hervé Pelloux
ABSTRACT Bradyzoite-to-tachyzoite conversion plays a role in the pathogenesis of recrudescence of ocular toxoplasmosis and disease in immunocompromised persons. The currently available medicines are ineffective on cysts and fail to prevent reactivation of latent toxoplasmosis. A previous study showed that the histone deacetylase inhibitor FR235222 has a dramatic effect on tachyzoite growth and induces tachyzoite-to-bradyzoite conversion in vitro. The present study shows that FR235222 can target in vitro-converted cysts and bradyzoites. Moreover, the compound is active on ex vivo T. gondii cysts. Free bradyzoites isolated after lysis of the cell wall did not proliferate in vitro when the cyst was treated with FR235222. The results imply that this compound is able to cross the T. gondii cystic cell wall. Fluorescent labeling shows that the compound impairs the capacity of the bradyzoites to convert without damaging the cyst wall integrity. In vivo inoculation of formerly treated cysts fails to infect mice when these cysts were treated with FR235222. We used our structural knowledge of FR235222 and its target, T. gondii HDAC3, to synthesize new FR235222 derivative compounds. We identified two new molecules that are highly active against tachyzoites. They harbor a better selectivity index that is more suitable for a future in vivo approach. These results identify FR235222 and its derivatives as new lead compounds in the range of therapeutics available for acute and chronic toxoplasmosis.
Journal of Experimental Medicine | 2016
Laurence Braun; Marie-Pierre Brenier-Pinchart; Julien Vollaire; Véronique Josserand; Rose-Laurence Bertini; Aurélie Varesano; Bastien Touquet; Pieter-Jan De Bock; Yohann Couté; Isabelle Tardieux; Alexandre Bougdour; Mohamed-Ali Hakimi
Gay et al. identify a Toxoplasma gondii secreted effector that recruits NuRD transcriptional repressor and blocks IFN-γ–stimulated STAT1-dependent gene expression, thus dampening host responses to infection.